In recent years, artificial intelligence technology has widely influenced the design field, introducing new ideas to efficiently and systematically solve urban renewal design problems. The purpose of this study is to create a stylized generation technology for building facade decoration in historic districts, which will aid in the design and control of district style and form. The goal is to use the technical advantages of the conditional generative adversarial network (CGAN) in image generation and style transfer to create a method for independently designing a specific facade decoration style by interpreting image data of historical district facades. The research in this paper is based on the historical district of Putian in Fujian Province and facilitates an experiment of image data acquisition, image processing and screening, model training, image generation, and style matching of the target area. The research found the following: (1) CGAN technology can better identify and generate the decorative style of historical districts. It can realize the overall or partial scheme design of the facade. (2) In terms of adaptability, this method can provide a better scheme reference for historical district reconstruction, facade renovation, and renovation design projects. Especially for districts with obvious decorative styles, the visualization effect is better. In addition, it also has certain reference significance for the determination and design of the facade decoration style of a specific historical building. (3) Lastly, this method can better learn the internal laws of the complex district style and form to generate a new design with a clear decoration style attribute. It can be extended to other fields of historical heritage protection to enhance practitioners’ stylized control of the heritage environment and improve the efficiency and capability of professional design.
The COVID-19 pandemic has led to a re-examination of the urban space, and the field of planning and architecture is no exception. In this study, a conditional generative adversarial network (CGAN) is used to construct a method for deriving the distribution of urban texture through the distribution hotspots of the COVID-19 epidemic. At the same time, the relationship between urban form and the COVID-19 epidemic is established, so that the machine can automatically deduce and calculate the appearance of urban forms that are prone to epidemics and may have high risks, which has application value and potential in the field of planning and design. In this study, taking Macau as an example, this method was used to conduct model training, image generation, and comparison of the derivation results of different assumed epidemic distribution degrees. The implications of this study for urban planning are as follows: (1) there is a correlation between different urban forms and the distribution of epidemics, and CGAN can be used to predict urban forms with high epidemic risk; (2) large-scale buildings and high-density buildings can promote the distribution of the COVID-19 epidemic; (3) green public open spaces and squares have an inhibitory effect on the distribution of the COVID-19 epidemic; and (4) reducing the volume and density of buildings and increasing the area of green public open spaces and squares can help reduce the distribution of the COVID-19 epidemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.