Brain implantable devices have various limitations in terms of size, power, biocompatibility and mechanical properties that need to be addressed. This paper presents a neural implant that is powered wirelessly using a flexible biocompatible antenna. This delivers power to an LED at the end of the shaft to provide a highly efficient demonstration. The proposed design in this study combines mechanical properties and practicality given the numerous constraints of this implant typology. We have applied a modular structure approach to the design of this device considering three modules of antenna, conditioner circuit and shank. The implant was fabricated using a flexible substrate of Polyimide and encapsulated by PDMS for chronic implantation. In addition, finite element method COMSOL Multiphysics simulation of mechanical forces acting on the implant and shank was carried out to validate a viable shank conformation-encapsulation combination that will safely work under operational stress with a satisfactory margin of safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.