Elicitors are molecules which can induce the activation of plant defence responses. Elicitor activity of intercellular wash fluid from Russian wheat aphid, Diuraphis noxia (Mordvilko) infested resistant (cv Tugela DN), and susceptible (cv Tugela), wheat (Triticum aestivum L.), was investigated. Known Russian wheat aphid resistance related responses such as peroxidase and β-1,3-glucanase activities were used as parameters of elicitor activity. The intercellular wash fluid from infested resistant plants contains high elicitor activity while that from infested susceptible plants contains no or very little elicitor activity. After applying C-18 reverse phase and concanavalin A Sepharose chromatography, elicitor active glycoproteins were isolated from the intercellular wash fluid of Russian wheat aphid infested resistant wheat. The elicitor-active glycoproteins separated into three polypeptides during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isolated glycoproteins elicited peroxidase activity to higher levels in resistant than in susceptible cultivars. It was evident that the glycoproteins were probably a general elicitor of plant origin. Information gained from these studies is valuable for the development of plant activators to enhance the defence responses of plants.
Russian wheat aphid (Diuraphis noxia) is an international wheat pest and was first recorded in South Africa in 1978 in the Bethlehem area in the Eastern Free State. Lesotho lies adjacent to one of the largest wheat producing areas in South Africa, the Eastern Free State, where winter wheat and facultative types are cultivated under dry land conditions. Wheat (Triticum aestivum L.) is an important crop adapted to all agro-ecological zones of Lesotho. Russian wheat aphid may have a significant impact on wheat yield. No monitoring or pest control is being done in Lesotho and at this stage there is very little information on the Russian wheat aphid resistance of wheat cultivars cultivated in Lesotho. In view of this it is important to monitor the distribution of Russian wheat aphid biotypes in Lesotho and determine the level of Russian wheat aphid resistance in local Lesotho wheat cultivars. Two local Lesotho wheat cultivars, Bolane and Makalaote were screened together with South African cultivars Elands, Matlabas, Senqu, PAN3379, PAN3118 and SST387, in the glasshouse against all four known biotypes that occur in South Africa. All these cultivars were also planted in 5 m plots in the field at two localities Leribe and Roma in the lowlands of Lesotho. These cultivars were screened in the field for Russian wheat aphid resistance. The predominant Russian wheat aphid biotypes in these areas were also determined. The Lesotho cultivar, Bolane had resistance against RWASA2 in the glasshouse, while Makalaote did not have any Russian wheat aphid resistance in either the glasshouse or field screenings. To contribute to food security an increasing wheat yield potential is a high priority. Russian wheat aphid has been included in the list of important international cereal pests. Russian wheat aphid adapts to changing environments and taking their ecology, distribution, virulence patterns, and variability into account is important in minimizing the gap between actual and attainable yields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.