This paper presents a novel method for entity disambiguation in anonymized graphs using local neighborhood structure. Most existing approaches leverage node information, which might not be available in several contexts due to privacy concerns, or information about the sources of the data. We consider this problem in the supervised setting where we are provided only with a base graph and a set of nodes labelled as ambiguous or unambiguous. We characterize the similarity between two nodes based on their local neighborhood structure using graph kernels; and solve the resulting classification task using SVMs. We give empirical evidence on two real-world datasets, comparing our approach to a state-of-the-art method, highlighting the advantages of our approach. We show that using less information, our method is significantly better in terms of either speed or accuracy or both. We also present extensions of two existing graphs kernels, namely, the direct product kernel and the shortestpath kernel, with significant improvements in accuracy. For the direct product kernel, our extension also provides significant computational benefits. Moreover, we design and implement the algorithms of our method to work in a distributed fashion using the GraphLab framework, ensuring high scalability.
Firewalls are clear divisions between border policing and the provision of basic social rights. They have a dual character: to ensure that no information collected with the purpose of safeguarding basic social rights should be shared for immigration control purposes; and that migrants should not be subject to immigration control when being present at, or in the vicinity, of religious, private and public institutions upholding and providing social rights. This article suggests a normative argument for ‘firewalls’ in the context of social work and develops the concept theoretically as a principle practised and negotiated at different scales.
Abstract. We consider the problem of classifying graphs using graph kernels. We define a new graph kernel, called the generalized shortest path kernel, based on the number and length of shortest paths between nodes. For our example classification problem, we consider the task of classifying random graphs from two well-known families, by the number of clusters they contain. We verify empirically that the generalized shortest path kernel outperforms the original shortest path kernel on a number of datasets. We give a theoretical analysis for explaining our experimental results. In particular, we estimate distributions of the expected feature vectors for the shortest path kernel and the generalized shortest path kernel, and we show some evidence explaining why our graph kernel outperforms the shortest path kernel for our graph classification problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.