Abstract. In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock, the pore pressure distribution and propagation, and the microseismic response were monitored at a high spatial and temporal resolution.
Fluid pressure within the Earth's crust is a key driver for triggering natural and human-induced seismicity. Measuring fluid pressure evolution would be highly beneficial for understanding the underlying driving mechanisms and supporting seismic hazard assessment. Here we show that seismic velocities monitored on the 20-m scale respond directly to changes in fluid pressure. Our data show that volumetric strain resulting from effective stress changes is sensed by seismic velocity, while shear dislocation is not. We are able to calibrate seismic velocity evolution against fluid pressure and strain with in situ measurements during a decameter-scale fluid injection experiment in crystalline rock. Thus, our 4-D seismic tomograms enable tracking of fluid pressure and strain evolution. Our findings demonstrate a strong potential toward monitoring transient fluid pressure variations and stress changes for well-instrumented field sites and could be extended to monitoring hydraulic stimulations in deep reservoirs. Plain Language Summary The pressure of fluids in the subsurface is generally a function of depth as well as the regional geological history. Changes to the subsurface fluid pressure-be it natural or human induced-disturb the stress field and are known to drive volcanic eruptions, as well as to trigger earthquakes. For example, pressure increase by fluid injection for hydraulic stimulation and wastewater disposal has been linked to earthquake activity. Unfortunately, pressure measurements need direct access through boreholes, so that pressure data are only available for few locations. A method for estimating the spatial distribution of fluid pressure remotely would thus be highly beneficial. From measurements in a 20-m-scale experiment in granite, we find that fluid pressure propagation can be predicted from observed seismic velocity variations, based on a strong correlation between observed changes in seismic velocities and fluid pressure measured within the rock. As seismic velocities can be readily measured on the reservoir scale, our results demonstrate a strong potential of seismic velocity monitoring for remotely estimating fluid pressure changes in deep reservoirs, along faults, or in volcanic systems. The estimated pressure and stress changes could be an important input to real-time risk analysis of fault reactivation and volcanic eruptions.
Abstract. We performed a series of 12 hydraulic stimulation experiments in a 20 × 20 × 20 m foliated, crystalline rock volume intersected by two distinct fault sets at the Grimsel Test Site, Switzerland. The goal of these experiments was to improve our understanding of stimulation processes associated with high-pressure fluid injection used for reservoir creation in enhanced or engineered geothermal systems. In the first six experiments, pre-existing fractures were stimulated to induce shear dilation and enhance permeability. Two types of shear zones were targeted for these hydroshearing experiments: i) ductile ones with intense foliation and ii) brittle-ductile ones associated with a fractured zone. The second series of six stimulations were performed in borehole intervals without natural fractures to initiate and propagate hydraulic fractures that connect the wellbore to the existing fracture network. The same injection protocol was used for all experiments within each stimulation series so that the differences observed will give insights into the effect of geology on the seismo-hydro-mechanical response rather than differences due to the injection protocols. Deformations and fluid pressure were monitored using a dense sensor network in boreholes surrounding the injection locations. Seismicity was recorded with sensitive in-situ acoustic emission sensors both in boreholes and at the tunnel walls. We observed high variability in the seismic response in terms of seismogenic indices, b-values, spatial and temporal evolution during both hydroshearing and hydrofracturing experiments, which we attribute to local geological heterogeneities. Seismicity was most pronounced for injections into the highly conductive brittle-ductile shear zones, while injectivity increase on these structures was only marginal. No significant differences between the seismic response of hydroshearing and hydrofracturing was identified, possibly because the hydrofractures interact with the same pre-existing fracture network that is reactivated during the hydroshearing experiments. Fault slip during the hydroshearing experiments was predominantly aseismic. The results of our hydraulic stimulations indicate that stimulation of short borehole intervals with limited fluid volumes (i.e., the concept of zonal insulation) may be an effective approach to limit induced seismic hazard if highly seismogenic structures can be avoided.
Abstract. As part of the In-situ Stimulation and Circulation (ISC) experiment, hydraulic fracturing (HF) tests were conducted in a moderately fractured crystalline rock mass at the Grimsel Test Site (GTS), Switzerland. The aim of these injection tests was to improve our understanding of processes associated with high-pressure fluid injection. A total of six HF experiments were performed in two inclined boreholes, where the surrounding rock mass was accessed with twelve observation boreholes, which allow high-resolution monitoring of fracture fluid pressure, strain and micro-seismicity in an exceptionally well-characterized rock mass. A similar injection protocol was used for all six experiments to investigate the complexity of the fracture propagation processes. At the borehole scale, these processes involved newly created tensile fractures intersecting the injection interval while at the cross-hole scale, the natural network of fractures dominated the propagation process. The six HF experiments can be divided into two groups based on their injection location (i.e., south or north to a brittle ductile shear zone), their similarity of injection pressures and their response to deformation and pressure propagation. The injection tests performed in the south connect upon propagation to the brittle ductile shear zone. Thus, the shear zone acts as a dominant drain and a constant pressure boundary. The experiments executed north of the shear zone, show smaller injection pressures and larger backflow during bleed-off phases. From a seismic perspective, the injection tests show high variability in seismic response independent of the location of injection. For two injection experiments, we observe re-orientation of the seismic cloud as the fracture propagated away from the wellbore. In both cases, the main propagation direction is normal to the minimum principal stress direction. The re-orientation during propagation is interpreted to be related to a strong stress heterogeneity and the intersection of natural fractures striking different than the propagating hydraulic fracture. The seismic activity was limited to about 10 m radial distance from the injection point. In contrast, strain and pressure signals reach further into the rock mass indicating that the process zone around the injection point is larger than the zone illuminated by seismic signals. Furthermore, strain signals indicate not just single fracture openings but also the propagation of multiple fractures. Transmissivities of injection intervals increase about 2–4 orders of magnitudes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.