We report an in-plane solid-liquid-solid (IPSLS) mode for obtaining self-avoiding lateral silicon nanowires (SiNW) in a reacting-gas-free annealing process, where the growth of SiNWs is guided by liquid indium drops that transform the surrounding a-SiratioH matrix into crystalline SiNWs. The SiNWs can be approximately mm long, with the smallest diameter down to approximately 22 nm. A high growth rate of >10(2) nm/s and rich evolution dynamics are revealed in a real-time in situ scanning electron microscopy observation. A qualitative growth model is proposed to account for the major features of this IPSLS SiNW growth mode.
The incorporation of metal atoms into silicon nanowires during metal-particle-assisted growth is a critical issue for various nanowire-based applications. Here we have been able to access directly the incorporation and redistribution of metal atoms into silicon nanowires produced by two different processes at growth rates ranging from 3 to 40 nm s À 1 , by using laser-assisted atom probe tomography and scanning transmission electron microscopy. We find that the concentration of metal impurities in crystalline silicon nanowires increases with the growth rate and can reach a level of two orders of magnitude higher than that in their equilibrium solubility. Moreover, we demonstrate that the impurities are first incorporated into nanowire volume and then segregate at defects such as the twin planes. A dimer-atominsertion kinetic model is proposed to account for the impurity incorporation into nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.