Little is known about the induction period before the nucleation and growth of colloidal semiconductor quantum dots. Here, we introduce an approach that allows us to probe intermediates present in the induction period. We show that this induction period itself exhibits distinct stages with the evolution of the intermediates, first without and then with the formation of covalent bonds between metal cations and chalcogenide anions. The intermediates are optically invisible in toluene, while the covalent-bonded intermediates become visible as magic-size clusters when a primary amine is added. Such evolution of magic-size clusters provides indirect but compelling evidence for the presence of the intermediates in the induction period and supports the multi-step nucleation model. Our study reveals that magic-size clusters could be readily engineered in a single-size form, and suggests that the existence of the intermediates during the growth of conventional quantum dots results in low product yield.
Little is known about the formation pathway of colloidal semiconductor magic‐size clusters (MSCs). Here, the synthesis of the first single‐ensemble ZnSe MSCs, which exhibit a sharp optical absorption singlet peaking at 299 nm, is reported; their formation is independent of Zn and Se precursors used. It is proposed that the formation of MSCs starts with precursor self‐assembly followed by Zn and Se covalent bond formation to result in immediate precursors (IPs) which can transform into the MSCs. It is demonstrated that the IPs in cyclohexane appear transparent in optical absorption, and become visible as MSCs exhibiting one sharp optical absorption peak when a primary amine is added at room temperature. It is shown that when the preparation of the IP is controlled to be within the induction period, which occurs prior to nucleation and growth of conventional quantum dots (QDs), the resulting MSCs can be produced without the complication of the simultaneous coproduction of conventional QDs. The present study reveals the existence of precursor self‐assembly which leads to the formation of colloidal semiconductor MSCs and provides insights into a multistep nucleation process in cluster science.
Single‐atom photocatalysis has been demonstrated as a novel strategy to promote heterogeneous reactions. There is a diversity of monoatomic metal species with specific functions; however, integrating representative merits into dual‐single‐atoms and regulating cooperative photocatalysis remain a pressing challenge. For dual‐single‐atom catalysts, enhanced photocatalytic activity would be realized through integrating bifunctional properties and tuning the synergistic effect. Herein, dual‐single‐atoms supported on conjugated porous carbon nitride polymer are developed for effective photocatalytic CO2 reduction, featuring the function of cobalt (Co) and ruthenium (Ru). A series of in situ characterizations and theoretical calculations are conducted for quantitative analysis of structure–performance correlation. It is concluded that the active Co sites facilitate dynamic charge transfer, while the Ru sites promote selective CO2 surface‐bound interaction during CO2 photoreduction. The combination of atom‐specific traits and the synergy between Co and Ru lead to the high photocatalytic CO2 conversion with corresponding apparent quantum efficiency (AQE) of 2.8% at 385 nm, along with a high turnover number (TON) of more than 200 without addition of any sacrificial agent. This work presents an example of identifying the roles of different single‐atom metals and regulating the synergy, where the two metals with unique properties collaborate to further boost the photocatalytic performance.
A sandwich-structured ceramic/polymer dielectric nanocomposite with significantly enhanced breakdown strength and restrained conductive loss was obtained by tailoring filler contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.