Abstract. 2D thermo-mechanical waves in SMA (Shape Memory Alloys) patches are simulated with a model derived for a special case of material transformations. The mathematical model includes the coupling effect between thermal and mechanical fields. It is shown that the classical 1D Falk dynamical model of SMA is a special case of the formulated 2D model. The differential algebraic approach is adopted for the numerical analysis. Computational experiments are carried out with small distributed mechanical loadings to analyze thermo-mechanical waves and coupling effects. Numerical results from 2D structures are compared with its 1D analog which is already been verified.
In this paper, the finite volume method is developed to analyze coupled dynamic problems of nonlinear thermoelasticity. The major focus is given to the description of martensitic phase transformations essential in the modelling of shape memory alloys. Computational experiments are carried out to study the thermo-mechanical wave interactions in a shape memory alloy rod, and a patch. Both mechanically and thermally induced phase transformations, as well as hysteresis effects, in a one-dimensional structure are successfully simulated with the developed methodology. In the two-dimensional case, the main focus is given to square-to-rectangular transformations and examples of martensitic combinations under different mechanical loadings are provided.
A numerical model is constructed for modelling macroscale damping effects induced by the first-order martensite phase transformations in a shape memory alloy rod. The model is constructed on the basis of the modified Landau-Ginzburg theory that couples nonlinear mechanical and thermal fields. The free energy function for the model is constructed as a double well function at low temperature, such that the external energy can be absorbed during the phase transformation and converted into thermal form. The Chebyshev spectral methods are employed together with backward differentiation for the numerical analysis of the problem. Computational experiments performed for different vibration energies demonstrate the importance of taking into account damping effects induced by phase transformations.
In this paper, a low dimensional model is constructed to approximate the nonlinear ferroelastic dynamics involving mechanically and thermally-induced martensite transformations. The dynamics of the first order martensite transformation is first modeled by a set of nonlinear coupled partial differential equations (PDEs), which is obtained by using the modified Ginzburg–Landau theory. The Chebyshev collocation method is employed for the numerical analysis of the PDE model. An extended proper orthogonal decomposition is then carried out to construct a set of empirical orthogonal eigenmodes of the dynamics, with which system characteristics can be optimally approximated (in a specified sense) within a range of different temperatures and under various mechanical and thermal loadings. The performance of the low dimensional model is analyzed numerically. Results on the dynamics involving mechanically and thermally-induced phase transformations and the hysteresis effects induced by such transformations are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.