We analyze the question of whether the inf-convolution of law-invariant risk functionals (preferences) is still law-invariant. In other words, we try to understand whether the representative economic agent (after risk redistribution) only cares about the distribution of the total risk, assuming all individual agents do so. Although the answer to the above question seems to be affirmative for many examples of commonly used risk functionals in the literature, the situation becomes delicate without assuming specific forms and properties of the individual functionals.We illustrate with examples the surprising fact that the answer to the main question is generally negative, even in an atomless probability space. Furthermore, we establish a few very weak conditions under which the answer becomes positive. These conditions do not require any specific forms or convexity of the risk functionals, and they are the richness of the underlying probability space, and monotonicity or continuity of one of the risk functionals. We provide several examples and counter-examples to discuss the subtlety of the question on law-invariance.
Inspired by the recent developments in risk sharing problems for the value at risk (VaR), the expected shortfall (ES), and the range value at risk (RVaR), we study the optimization of risk sharing for general tail risk measures. Explicit formulas of the inf-convolution and Pareto-optimal allocations are obtained in the case of a mixed collection of left and right VaRs, and in that of a VaR and another tail risk measure. The inf-convolution of tail risk measures is shown to be a tail risk measure with an aggregated tail parameter, a phenomenon very similar to the cases of VaR, ES, and RVaR. Optimal allocations are obtained in the settings of elliptical models and model uncertainty. In particular, several results are established for tail risk measures in the presence of model uncertainty, which may be of independent interest outside the framework of risk sharing. The technical conclusions are quite general without assuming any form of convexity of the tail risk measures. Our analysis generalizes in several directions the recent literature on quantile-based risk sharing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.