Proton detection has attracted immense interest recently, owing to the increasing demands for applications in physics, medicine, and space. However, the proton detectors suffer from a general problem of performance degradation caused by the proton irradiation-induced defects over long-term operation. Herein, we report a proton detector based on the methylammonium lead tribromide (MAPbBr 3 ) perovskite single crystal, which exhibits remarkable radiation tolerance. The detector can monitor the fluence rate and dose quantitatively up to a high dose of 45 kGy with a fairly low bias electric field (0.01 V μm −1 ). Further increasing the dose to 1 MGy (7.3 × 10 13 p cm −2 ) results in the detector dark current degrading gradually, but the dark current can rapidly recover at room temperature in a few hours after irradiation, showing a desirable self-healing characteristic, which can further enhance the radiation tolerance of the detector. These results show that this perovskite-based proton detector is highly promising for future applications in proton therapy, proton radiography, and so forth.
Single-atom catalysts (SACs) represent the ultimate goal of nanocatalysis fields. However, complex synthesis processes and pyrolysis inactivation problems are the two main challenges that plague the development of SACs. In this work, we propose that the ultralow-energy ion-implantation (ULEII) method could be utilized to simply and efficiently synthesize stable SACs. Our simulation results of Pt-ion implantation into graphene indicate that the total doping efficiency, including direct displacement doping and indirect trap doping, can be effectively optimized by delicately adjusting the energy of incident ions. Further systematic molecular dynamics simulations and first-principles calculations demonstrate that irradiation-induced vacancy defects can effectively capture and anchor adsorbed metal atoms on the graphene surface. The stability and migration characteristics of various defects are also clearly elucidated. Theoretically, by selecting an optimal ion energy, the ULEII method can achieve a doping efficiency as high as 73.4% .
Electronic devices based on two-dimensional materials are promising for application in space instrumentation because of their small size and low power consumption, and irradiation tolerance of these devices is required because of the existence of energetic particles in aerospace conditions. We investigate the performance degradation of graphene field effect transistors (GFETs) with 3 MeV protons by using an in situ irradiation facility. Our results indicate that GFET performance degraded severely at the ion fluence of 8 × 1011 cm –2. Surprisingly, although the performance of the proton-irradiated GFETs is difficult to recover in vacuum, it can nearly completely recover within hours when the GFET is moved into an air environment, indicating that the performance change is due to the charge accumulation in SiO2 under proton irradiation rather than the lattice damage of graphene. Our results have great importance for the application of 2D devices in aerospace and other radiative environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.