It has been widely certified that hyperspectral images can be effectively used to monitor soil organic matter (SOM). Though numerous bands reveal more details in spectral features, information redundancy and noise interference also come accordingly. Due to the fact that, nowadays, prevailing dimensionality reduction methods targeted to hyperspectral images fail to make effective band selections, it is hard to capture the spectral features of ground objects quickly and accurately. In this paper, to solve the inefficiency and instability of hyperspectral feature selection, we proposed a feature selection framework named reinforcement learning for feature selection in hyperspectral regression (RLFSR). Specifically, the Markov Decision Process (MDP) was used to simulate the hyperspectral band selection process, and reinforcement learning agents were introduced to improve model performance. Then two spectral feature evaluation methods were introduced to find internal relationships between the hyperspectral features and thus comprehensively evaluate all hyperspectral bands aimed at the soil. The feature selection methods—RLFSR-Net and RLFSR-Cv—were based on pre-trained deep networks and cross-validation, respectively, and achieved excellent results on airborne hyperspectral images from Yitong Manchu Autonomous County in China. The feature subsets achieved the highest accuracy for most inversion models, with inversion R2 values of 0.7506 and 0.7518, respectively. The two proposed methods showed slight differences in spectral feature extraction preferences and hyperspectral feature selection flexibilities in deep reinforcement learning. The experiments showed that the proposed RLFSR framework could better capture the spectral characteristics of SOM than the existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.