Objective To identify schwannomas from gastrointestinal stromal tumors (GISTs) by CT features using Logistic Regression (LR), Decision Trees (DT), Random Forest (RF), and Gradient Boosting Decision Tree (GBDT). Methods This study enrolled 49 patients with schwannomas and 139 with GISTs proven by pathology. CT features with P \ 0.1 derived from univariate analysis were inputted to four models. Five machine learning (ML) versions, multivariate analysis, and radiologists' subjective diagnostic performance were compared to evaluate diagnosis performance of all the traditional and advanced methods.
ResultsThe CT features with P \ 0.1 were as follows: (1) CT attenuation value of unenhancement phase (CTU), (2) portal venous enhancement (CTV), (3) degree of enhancement in the portal venous phase (DEPP), (4) CT attenuation value of portal venous phase minus arterial phase (CTV-CTA), (5) enhanced potentiality (EP), (6) location, (7) contour, (8) growth pattern, (9) necrosis, (10) surface ulceration, (11) enlarged lymph node (LN). LR (M1), RF, DT, and GBDT models contained all of the above 11 variables, while LR (M2) was developed using six most predictive variables derived from (M1). LR (M2) model with AUC of 0.967 in test dataset was thought to be optimal model in differentiating the two tumors. Location in gastric body, exophytic and mixed growth pattern, lack of necrosis and surface ulceration, enlarged lymph nodes, and larger EP were the most important CT features suggestive of schwannomas. Conclusion LR (M2) provided the optimal diagnostic potency among other ML versions, multivariate analysis, and radiologists' performance on differentiation of schwannomas from GISTs.