For diagnosis of coronavirus disease 2019 (COVID-19), a SARS-CoV-2 virus-specific reverse transcriptase polymerase chain reaction (RT-PCR) test is routinely used. However, this test can take up to 2 d to complete, serial testing may be required to rule out the possibility of false negative results and there is currently a shortage of RT-PCR test kits, underscoring the urgent need for alternative methods for rapid and accurate diagnosis of patients with COVID-19. Chest computed tomography (CT) is a valuable component in the evaluation of patients with suspected SARS-CoV-2 infection. Nevertheless, CT alone may have limited negative predictive value for ruling out SARS-CoV-2 infection, as some patients may have normal radiological findings at early stages of the disease. In this study, we used artificial intelligence (AI) algorithms to integrate chest CT findings with clinical symptoms, exposure history and laboratory testing to rapidly diagnose patients who are positive for COVID-19. Among a total of 905 patients tested by real-time RT-PCR assay and next-generation sequencing RT-PCR, 419 (46.3%) tested positive for SARS-CoV-2. In a test set of 279 patients, the AI system achieved an area under the curve of 0.92 and had equal sensitivity as compared to a senior thoracic radiologist. The AI system also improved the detection of patients who were positive for COVID-19 via RT-PCR who presented with normal CT scans, correctly identifying 17 of 25 (68%) patients, whereas radiologists classified all of these patients as COVID-19 negative. When CT scans and associated clinical history are available, the proposed AI system can help to rapidly diagnose COVID-19 patients. The COVID-19 pandemic has rapidly propagated due to widespread person-to-person transmission 1-6. Laboratory confirmation of SARS-CoV-2 is performed with a virus-specific RT-PCR, but the test can take up to 2 d to complete. Chest CT is a valuable component of evaluation and diagnosis in symptomatic patients with
Drug delivery systems (DDSs) based on nanomaterials have shown a promise for cancer chemotherapy; however, it remains a great challenge to localize on-demand release of anticancer drugs in tumor tissues to improve therapeutic effects and minimize the side effects. In this regard, photoresponsive DDSs that employ light as an external stimulus can offer a precise spatiotemporal control of drug release at desired sites of interest. Most photoresponsive DDSs are only responsive to ultraviolet-visible light that shows phototoxicity and/or shallow tissue penetration depth, and thereby their applications are greatly restricted. To address these issues, near-infrared (NIR) photoresponsive DDSs have been developed. In this review, the development of NIR photoresponsive DDSs in last several years for cancer photo-chemotherapy are summarized. They can achieve on-demand release of drugs into tumors of living animals through photothermal, photodynamic, and photoconversion mechanisms, affording obviously amplified therapeutic effects in synergy with phototherapy. Finally, the existing challenges and further perspectives on the development of NIR photoresponsive DDSs and their clinical translation are discussed.
Background Chest CT is used for the assessment of the severity of patients infected with novel coronavirus 2019 (COVID-19). We collected chest CT scans of 202 patients diagnosed with the COVID-19, and try to develop a rapid, accurate and automatic tool for severity screening follow-up therapeutic treatment. Methods A total of 729 2D axial plan slices with 246 severe cases and 483 non-severe cases were employed in this study. By taking the advantages of the pre-trained deep neural network, four pre-trained off-the-shelf deep models (Inception-V3, ResNet-50, ResNet-101, DenseNet-201) were exploited to extract the features from these CT scans. These features are then fed to multiple classifiers (linear discriminant, linear SVM, cubic SVM, KNN and Adaboost decision tree) to identify the severe and non-severe COVID-19 cases. Three validation strategies (holdout validation, tenfold cross-validation and leave-one-out) are employed to validate the feasibility of proposed pipelines. Results and conclusion The experimental results demonstrate that classification of the features from pre-trained deep models shows the promising application in COVID-19 severity screening, whereas the DenseNet-201 with cubic SVM model achieved the best performance. Specifically, it achieved the highest severity classification accuracy of 95.20% and 95.34% for tenfold cross-validation and leave-one-out, respectively. The established pipeline was able to achieve a rapid and accurate identification of the severity of COVID-19. This may assist the physicians to make more efficient and reliable decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.