Multi-access edge computing (MEC) brings high-bandwidth and low-latency access to applications distributed at the edge of the network. Data transmission and exchange become faster, and the overhead of the task migration between mobile devices and edge cloud becomes smaller. In this paper, we adopt the fine-grained task migration model. At the same time, in order to further reduce the delay and energy consumption of task execution, the concept of the task cache is proposed, which involves caching the completed tasks and related data on the edge cloud. Then, we consider the limitations of the edge cloud cache capacity to study the task caching strategy and fine-grained task migration strategy on the edge cloud using the genetic algorithm (GA). Thus, we obtained the optimal mobile device task migration strategy, satisfying minimum energy consumption and the optimal cache on the edge cloud. The simulation results showed that the task caching strategy based on fine-grained migration can greatly reduce the energy consumption of mobile devices in the MEC environment.
Nonnegative matrix factorization (NMF) has been introduced as an efficient way to reduce the complexity of data compression and its capability of extracting highly interpretable parts from data sets, and it has also been applied to various fields, such as recommendations, image analysis, and text clustering. However, as the size of the matrix increases, the processing speed of nonnegative matrix factorization is very slow. To solve this problem, this paper proposes a parallel algorithm based on GPU for NMF in Spark platform, which makes full use of the advantages of in-memory computation mode and GPU acceleration. The new GPU-accelerated NMF on Spark platform is evaluated in a 4-node Spark heterogeneous cluster using Google Compute Engine by configuring each node a NVIDIA K80 CUDA device, and experimental results indicate that it is competitive in terms of computational time against the existing solutions on a variety of matrix orders. Furthermore, a GPU-accelerated NMF-based parallel collaborative filtering (CF) algorithm is also proposed, utilizing the advantages of data dimensionality reduction and feature extraction of NMF, as well as the multicore parallel computing mode of CUDA. Using real MovieLens data sets, experimental results have shown that the parallelization of NMF-based collaborative filtering on Spark platform effectively outperforms traditional user-based and item-based CF with a higher processing speed and higher recommendation accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.