Rechargeable aluminium-ion batteries (AIBs) are considered to be promising alternatives for current lithium-ion batteries (LIBs), since they can offer the possibilities of low cost with high energy-to-price ratios. Unlike in...
The electrochemical performance of electrode materials is largely dependent on the structural and chemical evolutions during the charge−discharge processes. Hence, revealing ion storage chemistry could enlighten mechanistic understanding and offer guidance for rational design for energy storage materials. Here, we investigate the mechanisms of potassium (K)-ion storage in the promising bimetal oxide materials by in situ magnetometry. We focus on a single-phased hollow FeTiO 3 (SPH-FTO) hexagonal prism synthesized through a complexing-reagent assisted approach and find that the K-ion storage in this compound occurs predominantly with an intercalation mechanism and fractionally a conversion mechanism. We also demonstrate a K-ion hybrid capacitor assembled with the prepared SPH-FTO hexagonal prism anode and activated carbon cathode, delivering a high energy density and high power density as well as extraordinary cycling stability. This new understanding is used to showcase the inherently high K-ion storage properties from the earth-abundant FeTiO 3 .
The performance of electrode materials depends intensively on the lithium (Li)-ion storage mechanisms correlating ultimately with the Coulombic efficiency, reversible capacity, and morphology variation of electrode material upon cycling. Transition metal nitrides anode materials have exhibited high-energy density and superior rate capability; however, the intrinsic mechanism is largely unexplored and still unclear. Here, a typical 3D porous Fe 2 N micro-coral anode is prepared and, an intercalation-conversion-heterogeneity hybrid Li-ion storage mechanism that is beyond the conventional intercalation or conversion reaction is revealed through various characterization techniques and thermodynamic analysis. Interestingly, using advanced in situ magnetometry, the ratio (ca. 24.4%) of the part where conversion reaction occurs to the entire Fe 2 N can further be quantified. By rationally constructing a Li-ion capacitor comprising 3D porous Fe 2 N micro-corals anode and commercial AC cathode, the hybrid full device delivers a high energy-density (157 Wh kg −1 ) and high power-density (20 000 W kg −1 ), as well as outstanding cycling stability (93.5% capacitance retention after 5000 cycles). This research provides an original and insightful method to confirm the reaction mechanism of material related to transition metals and a fundamental basis for emerging fast charging electrode materials to be efficiently explored for a next-generation battery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.