Innovation in emulsion compositions is necessary to enrich emulsion formulations and applications. Herein, Pickering emulsions were prepared using silica nanoparticles and aliphatic primary amines with an oil− water ratio of 1:1 (v/v). Contact angle experiments revealed that the in situ hydrophobization of nanoparticles was caused by the surface adsorption of amine molecules. Notably, the interactions between amine compounds and the surface of silica nanoparticles were electrostatic attractions and mutual hydrogen bonding. The existence of hydrogen bonds was further confirmed by demulsification experiments using a chaotropic agent DMF and increasing temperatures. The hydrophobicity of silica nanoparticles can be effectively improved using most commercially available aliphatic primary amines such as n-hexylamine, n-octylamine, n-decylamine, dodecylamine, and tetradecylamine. The minimum concentrations of the aforementioned amines necessary for stabilizing the emulsions with 0.3 wt % silica nanoparticles are 3, 0.6, 0.3, 0.06, and 0.03 mM, respectively, decreasing significantly with increasing alkyl chain length. With the increase of the amine concentrations, the hydrophobicity of silica particles monotonically increased and finally resulted in the inversion of emulsions. The amine concentrations for emulsion phase inversion were 150, 40, 30, 20, and 20 mM, respectively, in the presence of 0.3 wt % silica nanoparticles. In this work, silica nanoparticles were hydrophobized using aliphatic primary amines. The composite stabilizers developed are useful for developing novel stimuli-responsive Pickering emulsions, while the synergistic effects introduced herein are also helpful in expanding the hydrophobization methods available for nanoparticles.
Wormlike micelles are conventional aggregates that exist in viscoelastic solutions. However, to achieve a solution with prominent viscoelasticity, rather high concentrations of surfactants are usually required due to the flexibility...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.