Summary
This article concerns optimal control of the linear motion, tilt motion, and yaw motion of a two‐wheeled self‐balancing robot (TWSBR). Traditional optimal control methods for the TWSBR usually require a precise model of the system, and other control methods exist that achieve stabilization in the face of parameter uncertainties. In practical applications, it is often desirable to realize optimal control in the absence of the precise knowledge of the system parameters. This article proposes to use a new feedback‐based reinforcement learning method to solve the linear quadratic regulation (LQR) control problem for the TWSBR. The proposed control scheme is completely online and does not require any knowledge of the system parameters. The proposed input decoupling mechanism and pre‐feedback law overcome the commonly encountered computational difficulties in implementing the learning algorithms. Both state feedback optimal control and output feedback optimal control are presented. Numerical simulation shows that the proposed optimal control scheme is capable of stabilizing the system and converging to the LQR solution obtained through solving the algebraic Riccati equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.