To study the influence of residual stress on the corrosion behavior of welded structures, methods such as residual stress measurement, microstructure observation, and corrosion morphology observation were used. The energy transformation model and corrosion-resistance constant model were utilized to reveal the mechanism of residual stress on the welded structures' corrosion behavior. The results show that the fusion line was the region that is most heavily affected by corrosion and sustains more serious corrosion damage than other areas, resulting in the welded structure becoming a high-incidence area for corrosion cracking and failure. Residual tensile stress could reduce the activation energy and surface atomic density, and therefore decrease the corrosion resistance of the welded structures. The residual compressive stress decreased the activation energy needed by metal atoms to convert into metal ions in welded structures, and simultaneously increased the surface atomic density. The corrosion resistance of the welded structures ultimately increased owing to the combined influence of changes in activation energy and surface atomic density.
The corrosion fatigue properties and fracture characteristics of friction stir welding joints of 7075 aluminum alloys were studied via corrosion fatigue tests, electrochemical measurements, and corrosion fatigue morphology and microstructure observations. The results show that the corrosion fatigue crack of the friction stir welding (FSW) joint of 7075 aluminum alloys originated in the junction zone between the thermomechanically affected zone and the weld nugget zone. The corrosion fatigue life of the joint decreased with increasing stress amplitude, with an S–N curve equation of lgN = 5.845 − 0.014S. Multiple crack sources were observed in the corrosion fatigue fracture. The main crack source originated from the corrosion pits at the interface between the thermomechanically affected zone and the weld nugget zone due to the influence of the coarse microstructure and the large potential difference between both zones. Corrosion morphologies of a rock candy block and an ant nest appeared in the crack propagation zone and the grain boundary of the weld nugget zone. In addition, fatigue speckles and intergranular fractures were observed, as well as brittle fracture characterized by cleavage steps and secondary cracks in the final fracture zone.
The nucleation mechanism of corrosion cracks in welded structures in natural seawater has been revealed through investigation on the corrosion behavior of X65-welded structures in natural seawater. The evolution laws of surface corrosion morphology, residual stress, and areas of welded structures with the most serious corrosion damage were analyzed by microstructure observation, corrosion morphology observation, residual stress detection, and magnetic field detection. The results show that the main factors of determining surface corrosion morphology evolution law of welded structures are microstructures of the weld joint, heat-affected zone (HAZ), and the fusion line. Due to the difference of corrosion rates between the weld joint, HAZ, and the coarse Widmänstatten structure in fusion line, the fusion line of welded structures receives the most serious damage while being corroded. Meanwhile, mutual reinforcement of residual stress and corrosion damage on the surface of welded structures further accelerate the nucleation of corrosion cracks. Under the influences of microstructure, residual stress, and corrosion, corrosion cracks that are parallel to weld joints generate first in the fusion line of welded structures. Therefore, it makes welded structures the source of marine steel structures’ corrosion failure.
Analyzing the pipeline sheet of X70 level, the work also establishes three-dimensional element model of pipeline welding with ANSYS (software of large general purpose with finite element analysis). After comparing different plans, changes of outer diameter and wall thickness are found influencing distributing laws of welding residual stress of welded pipes. Thus, the laws are concluded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.