This paper presents the analysis and design of a new, wearable orientation guidance device in modern travel aid systems for blind and visually impaired people. The four-stage double-diamond design model was applied in the design process to achieve human-centric innovation and to ensure technical feasibility and economic viability. Consequently, a sliding tactile feedback wristband was designed and prototyped. Furthermore, a Bezier curve-based adaptive path planner is proposed to guarantee collision-free planned motion. Proof-of-concept experiments on both virtual and real-world scenarios are conducted. The evaluation results confirmed the efficiency and feasibility of the design and imply the design’s remarkable potential in spatial perception rehabilitation.
Significant advances in new emerging technologies such as the 5th generation mobile networks (5G), Expand the reality (XR), and Artificial Intelligence (AI) enable extensive three-dimensional (3D) experience and interaction. The vivid 3D virtual dynamic displays and immersive experiences will become new normal in near future. The XR-based virtuality-reality co-existing classroom goes beyond the limitations of Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR). Such technology also enables integration of the digital and physical worlds and further creates a smart classroom featuring co-existed virtuality and reality. In this paper, we show an application of the XR enabling human-environment interaction. Through the theory explanation, practice platform and combination of virtual and reality, using XR we construct a new type of class. We develop the teaching methods using digital enabling, building information model library, and offline XR immersive teaching, and design a mixed teaching method which is virtual and real, and is available in online and offline formats. In our developed system the working scene as it is seen in practice is shown to the students. We consider the steel structure construction technology course in civil engineering and architecture as an example, to help the learners develop their theoretical understanding and practical skills. We also discuss the application and development of the class based on virtual and reality. This work shows the feasibility and significance of learning methods and the reconstruction and transformation of learning spaces empowered by new technologies in the digital era.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.