The exchange reaction tschermakite+2 diopside+2 quartz=tremolite+2 anorthite (HPCQ), in combination with the thermodynamic database TWQ (version 1.02, Berman, 1991), has been evaluated for its usefulness as a geothermometer. This reaction, which is both water conserving (independent of water fugacity) and which does not require the presence of garnet, is well suited for studying pyroxene‐bearing amphibolites. As an application of this geothermometer, we have re‐examined the amphibolites occurring in the Popple Hill gneiss of the Adirondack Lowlands of New York, USA, to better understand the magnitude of temperature variation preserved in the amphibolites themselves in this classic locality. At an assumed constant pressure of 7 kbar, the temperatures range from 619 to 682 °C from Edwards to Pierrepont and are uncorrelated with either distance along the strike of the region or with modal mineralogical variations. Hornblende exhibits a narrow compositional range suggesting that there has been little or no thermal gradient along the strike of the Lowlands. Temperatures recorded just north of Colton are, however, distinctly higher (694–758 °C). Although it is likely that the Popple Hill gneiss amphibolites experienced some effects of progressive metamorphism, particularly in the vicinity of Colton, the variations in modal mineralogy are most likely the result of such factors as local variations in the bulk chemistry of the protolith and in the fugacity of H2O due to infiltration of diluting species (e.g. CO2, CH4), rather than a regional temperature variation. Temperatures recorded by the HPCQ geothermometer reported here are similar in magnitude and geographic trend to those reported for graphite–calcite carbon‐isotope thermometry by Kitchen & Valley (1995), suggesting that peak metamorphism in the Adirondack Lowlands involved laterally extensive and fairly uniform isotherms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.