The formation of semiconductor heterojunctions and Z-schemes is still a very prominent and efficient strategy of materials chemists to extend the absorption range of semiconductor combinations. Moreover, the spatial separation of photoexcited charge carriers and thereby the reduction of their recombination ultimately lead to increased photocatalytic activities. The present article reviews recent trends in semiconductor heterojunctions and Z-schemes with a focus on hydrogen generation and water splitting, exhibiting specific needs for charge carrier separation. We also included recent material trends, i.e. 2D/2D combinations, direct Z-schemes, MOFs and COFs, and combinations with upconversion materials.
Due to its superior electrical properties and band gap suitable to absorb visible light, WO3 is an exceptional photoanode material for photoelectrochemical water splitting. The hydrothermal growth of WO3 photoelectrodes...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.