Although the primary mechanism of eukaryotic messenger RNA decay is exoribonucleolytic degradation in the 5'-to-3' orientation, it has been widely accepted that Bacteria can only degrade RNAs with the opposite polarity, i.e. 3' to 5'. Here we show that maturation of the 5' side of Bacillus subtilis 16S ribosomal RNA occurs via a 5'-to-3' exonucleolytic pathway, catalyzed by the widely distributed essential ribonuclease RNase J1. The presence of a 5'-to-3' exoribonuclease activity in B. subtilis suggested an explanation for the phenomenon whereby mRNAs in this organism are stabilized for great distances downstream of "roadblocks" such as stalled ribosomes or stable secondary structures, whereas upstream sequences are never detected. We show that a 30S ribosomal subunit bound to a Shine Dalgarno-like element (Stab-SD) in the cryIIIA mRNA blocks exonucleolytic progression of RNase J1, accounting for the stabilizing effect of this element in vivo.
SummaryRibonucleases J1 and J2 are recently discovered enzymes with dual 5Ј-to-3Ј exoribonucleolytic/ endoribonucleolytic activity that plays a key role in the maturation and degradation of Bacillus subtilis RNAs. RNase J1 is essential, while its paralogue RNase J2 is not. Up to now, it had generally been assumed that the two enzymes functioned independently. Here we present evidence that RNases J1 and J2 form a complex that is likely to be the predominant form of these enzymes in wild-type cells. While both RNase J1 and the RNase J1/J2 complex have robust 5Ј-to-3Ј exoribonuclease activity in vitro, RNase J2 has at least two orders of magnitude weaker exonuclease activity, providing a possible explanation for why RNase J1 is essential. The association of the two proteins also has an effect on the endoribonucleolytic properties of RNases J1 and J2. While the individual enzymes have similar endonucleolytic cleavage activities and specificities, as a complex they behave synergistically to alter cleavage site preference and to increase cleavage efficiency at specific sites. These observations dramatically change our perception of how these ribonucleases function and provide an interesting example of enzyme subfunctionalization after gene duplication.
Approximately 30 copies of the Ty1 retrotransposon are present in the genome of Saccharomyces cerevisiae. Previous studies gave insights into the global regulation of Ty1 transcription but provided no information on the behavior of individual genomic elements. This work shows that the expression of 31 individual Ty1 elements in S288C varies over a 50-fold range. Their transcription is repressed by chromatin structures, which are antagonized by the Swi/Snf and SAGA chromatin-modifying complexes in highly expressed Ty1 elements. These elements carry five potential Gcn4 binding sites in their promoter regions that are mostly absent in weakly expressed Ty1 copies. Consistent with this observation, Gcn4 activates the transcription of highly expressed Ty1 elements only. One of the potential Gcn4 binding sites acts as an upstream activating sequence in vivo and interacts with Gcn4 in vitro. Since Gcn4 has been shown to interact with Swi/Snf and SAGA, we predict that Gcn4 activates Ty1 transcription by targeting these complexes to specific Ty1 promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.