Covalently cross-linked whey protein microgels (WPM) were produced without the use of a chemical cross-linking agent. The hierarchical structure of WPM is formed by a complex interplay of heat denaturation, aggregation, electrostatic repulsion, and formation of disulfide bonds. Therefore, welldefined spherical particles with a diameter of several hundreds of nanometers and with relatively low polydispersity are formed in a narrow pH regime (5.8-6.2) only. WPM production was carried out on large scale by heating a protein solution in a plate-plate heat exchanger. Thereafter, the microgels were concentrated by microfiltration and spray dried into a powder. The spherical structure of the WPM was conserved in the powder. After re-dispersion, the microgel dispersions fully recovered their initial structure and size distribution. Due to the formation of disulfide bonds the particles were internally covalently cross-linked and were remarkably stable in a large pH range. Because of the pH dependent charge of the constituents the particles underwent significant size changes upon shifting the pH. Small angle X-ray scattering experiments were used to reveal their internal structure, and we report on the pH-induced structural changes occurring on different length scale. Our experiments showed that close analogies could be drawn to internally cross-linked and pH-responsive microgels based on weak polyelectrolytes. WPM also exhibited a pronounced swelling at pH values below the isoelectric point (IEP), and a collapse at the IEP. However, in contrast to classical microgels, WPM are not build up by simple polymer chains but possess a complex hierarchical structure consisting of strands formed by clusters of aggregated denatured proteins that act as primary building blocks. They were flexible enough to respond to changes of the environment, and were stable enough to tolerate pH values where the proteins were highly charged and the strands were stretched.
Aqueous dispersions of demineralized beta-lactoglobulin (beta-lg) were held at 85 degrees C for 15 min at a constant protein concentration of 1 wt % in the pH range of 3.0-7.0. This led to denatured protein content ranging from 20% (pH 3.0) to 90% (pH 5.0). The protein aggregates formed were characterized as to their stability to sedimentation (turbidity), morphology, size, surface charge, ANS surface hydrophobicity, and content in accessible thiol groups. Additionally, the changes in secondary structures of the protein upon heating were followed by Fourier transform infrared spectroscopy (FTIR). Stable dispersions (no sedimentation for 10 min) of individualized beta-lg microgels were obtained at specific pH 4.6 and 5.8, corresponding to an aggregation yield of about 80%. The width of the pH region leading to these microgels was 0.3 pH unit below or above the two specific pH values. Microgels were characterized by a spherical shape and remarkably low polydispersity in size (<0.2). Their z-average hydrodynamic diameter determined by dynamic light scattering (DLS) was between 160 and 220 nm, and their zeta-potential was +30 or -40 mV, depending on the initial pH before heating. Microgels obtained at pH 4.6 displayed a lower binding capacity for ANS and a lower content of accessible thiol groups as compared to those obtained at pH 5.8. Both types of microgels might therefore differ in their internal and interfacial structures. Between pH 4.6 and 5.8, large sedimenting protein particulates were obtained, whereas soluble aggregates were formed at pH <4.6 or >5.8. Interestingly, DLS experiments showed that before heating, beta-lg was mainly present in an oligomeric state at pH 4.6 and 5.8. This result was confirmed by FTIR measurements indicating the stronger contribution of the 1616-1624 cm(-1) spectral band corresponding to intermolecular beta-sheets in the pH range of 4.0-6.0. Upon heating, FTIR spectroscopy revealed that individualized microgels were obtained under pH conditions where a balance between attractive forces arising from protein unfolding leading to the formation of intermolecular beta-sheets (1616-1624 cm(-1 )band) and the repulsive electrostatic forces due to the initial protein net charge was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.