The corollaries of the obesity epidemic that plagues developed societies are malnutrition and resulting biochemical imbalances. Low levels of essential n-3 polyunsaturated fatty acids (n-3 PUFAs) have been linked to neuropsychiatric diseases, but the underlying synaptic alterations are mostly unknown. We found that lifelong n-3 PUFAs dietary insufficiency specifically ablates long-term synaptic depression mediated by endocannabinoids in the prelimbic prefrontal cortex and accumbens. In n-3-deficient mice, presynaptic cannabinoid CB(1) receptors (CB(1)Rs) normally responding to endocannabinoids were uncoupled from their effector G(i/o) proteins. Finally, the dietary-induced reduction of CB(1)R functions in mood-controlling structures was associated with impaired emotional behavior. These findings identify a plausible synaptic substrate for the behavioral alterations caused by the n-3 PUFAs deficiency that is often observed in western diets.
The major cholesterol oxidation products in the human circulation are 27-hydroxycholesterol, 24-hydroxycholesterol, and 7␣-hydroxycholesterol. These oxysterols are formed from cholesterol by specific cytochrome P450 enzymes, CYP27, CYP46, and CYP7A, respectively. An additional oxysterol present in concentrations comparable with 7␣-and 24-hydroxycholesterol is 4-hydroxycholesterol. We now report that patients treated with the antiepileptic drugs phenobarbital, carbamazepine, or phenytoin have highly elevated levels of plasma 4-hydroxycholesterol. When patients with uncomplicated cholesterol gallstone disease were treated with ursodeoxycholic acid, plasma 4-hydroxycholesterol increased by 45%. Ursodeoxycholic acid, as well as the antiepileptic drugs, are known to induce cytochrome P450 3A. Recombinant CYP3A4 was shown to convert cholesterol to 4-hydroxycholesterol, whereas no conversion was observed with CYP1A2, CYP2C9, or CYP2B6. The concentration of 4␣-hydroxycholesterol in plasma was lower than the concentration of 4-hydroxycholesterol and not affected by treatment with the antiepileptic drugs or ursodeoxycholic acid. Together, these data suggest that 4-hydroxycholesterol in human circulation is formed by a cytochrome P450 enzyme.Cholesterol oxidation products (oxysterols) have recently attracted great interest because of their numerous biological actions. They have been implicated in bile acid biosynthesis, cholesterol transport, and gene regulation (1). In addition, many oxysterols are toxic to cells and induce apoptosis (2-4). These compounds can be formed either by cholesterol autooxidation or by the action of cholesterol-metabolizing enzymes. Several oxysterols can be formed by both mechanisms, i.e. 7␣-hydroxycholesterol. This oxysterol is a predominant cholesterol auto-oxidation product but is also formed by the hepatic enzyme cholesterol 7␣-hydroxylase. Major oxysterols in the human circulation include 27-hydroxycholesterol, 24-hydroxycholesterol, and 7␣-hydroxycholesterol (5). One additional oxysterol present in human plasma at a relatively high concentration is 4-hydroxycholesterol (6). Very little is known about its formation or metabolism. We have shown earlier that small amounts of this oxysterol are formed, together with 4␣-hydroxycholesterol, during in vitro oxidation of low density lipoprotein, and low levels of the two oxysterols were also found in human atherosclerotic plaques (7). The ratio between 4␣-and 4-hydroxycholesterol was close to one both in oxidized LDL 1 and in plaques, and the amount formed in oxidized LDL was only a small percent of the dominating oxysterol, 7-oxocholesterol. These data suggested that very little 4-hydroxycholesterol is formed by cholesterol auto-oxidation. Because relatively high levels were reported in human plasma we hypothesized that this compound is formed in vivo by an enzymatic reaction. 4␣-and 4-hydroxycholesterol were determined in plasma from volunteers and patients, and it was found that patients treated with certain antiepileptic drugs, known...
24S-hydroxycholesterol is a side-chain oxidized oxysterol formed in the brain that is continuously crossing the blood-brain barrier to reach the circulation. There may be an opposite flux of 27-hydroxycholesterol, which is formed to a lower extent in the brain than in most other organs. Here we measured cholesterol, lathosterol, 24S-and 27-hydroxycholesterol, and plant sterols in four different brain areas of deceased Alzheimer's disease (AD) patients and controls. 24S-hydroxycholesterol was decreased and 27-hydroxycholesterol increased in all the brain samples from the AD patients. The difference was statistically significant in four of the eight comparisons. The ratio of 27-hydroxycholesterol to 24S-hydroxycholesterol was significantly increased in all brain areas of the AD patients and also in the brains of aged mice expressing the Swedish Alzheimer mutation APP751. Cholesterol 24S-hydroxylase and 27-hydroxylase protein was not significantly different between AD patients and controls. A high correlation was observed between the levels of 24S-hydroxycholesterol and lathosterol in the frontal cortex of the AD patients but not in the controls. Most probably the high levels of 27-hydroxycholesterol are due to increased influx of this steroid over the blood-brain barrier and the lower levels of 24S-hydroxycholesterol to decreased production.The high correlation between lathosterol and 24-hydroxycholesterol is consistent with a close coupling between synthesis and metabolism of cholesterol in the frontal cortex of the AD brain.
PurposeAge-related macular degeneration (AMD) is a frequent, complex disorder in elderly of European ancestry. Risk profiles and treatment options have changed considerably over the years, which may have affected disease prevalence and outcome. We determined the prevalence of early and late AMD in Europe from 1990 to 2013 using the European Eye Epidemiology (E3) consortium, and made projections for the future.DesignMeta-analysis of prevalence data.ParticipantsA total of 42 080 individuals 40 years of age and older participating in 14 population-based cohorts from 10 countries in Europe.MethodsAMD was diagnosed based on fundus photographs using the Rotterdam Classification. Prevalence of early and late AMD was calculated using random-effects meta-analysis stratified for age, birth cohort, gender, geographic region, and time period of the study. Best-corrected visual acuity (BCVA) was compared between late AMD subtypes; geographic atrophy (GA) and choroidal neovascularization (CNV).Main Outcome MeasuresPrevalence of early and late AMD, BCVA, and number of AMD cases.ResultsPrevalence of early AMD increased from 3.5% (95% confidence interval [CI] 2.1%–5.0%) in those aged 55–59 years to 17.6% (95% CI 13.6%–21.5%) in those aged ≥85 years; for late AMD these figures were 0.1% (95% CI 0.04%–0.3%) and 9.8% (95% CI 6.3%–13.3%), respectively. We observed a decreasing prevalence of late AMD after 2006, which became most prominent after age 70. Prevalences were similar for gender across all age groups except for late AMD in the oldest age category, and a trend was found showing a higher prevalence of CNV in Northern Europe. After 2006, fewer eyes and fewer ≥80-year-old subjects with CNV were visually impaired (P = 0.016). Projections of AMD showed an almost doubling of affected persons despite a decreasing prevalence. By 2040, the number of individuals in Europe with early AMD will range between 14.9 and 21.5 million, and for late AMD between 3.9 and 4.8 million.ConclusionWe observed a decreasing prevalence of AMD and an improvement in visual acuity in CNV occuring over the past 2 decades in Europe. Healthier lifestyles and implementation of anti–vascular endothelial growth factor treatment are the most likely explanations. Nevertheless, the numbers of affected subjects will increase considerably in the next 2 decades. AMD continues to remain a significant public health problem among Europeans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.