Highlights Highest hydrogen peroxide concentration and MTZ mineralization obtained for 0.07 mA.cm-2 The evolution • OH concentration was not in accordance with that of MTZ mineralization Dissolved oxygen can become a limiting reagent for • OH quantification with DMSO DMSO can be oxidized and reduced at the electrodes surface distorting • OH quantification DMSO efficient as • OH probe until 0. 07 mA.cm-2 in this study, not efficient for electrooxidation
In order to mineralize Metronidazole (MTZ), a process coupling an electro-Fenton pretreatment and a biological degradation was implemented. A mono-compartment batch reactor containing a carbon-felt cathode and a platinum anode was employed to carry out the electro-Fenton pretreatment of MTZ. A total degradation of MTZ (100 mg L) was observed at 0.07 mA.cm after only 20 min of electrolysis. Yet, after 1 and 2 h of electrolysis, the mineralization level remained low (16.2% and 32% respectively), guaranteeing a significant residual organic content for further biological treatment. LCMS/MS was used to determine the intermediates by-products and hence to propose a plausible degradation pathway. An increase from 0 to 0.44 and 0.6 for 1 and 2 h of electrolysis was observed for the BOD/COD ratio. Thus, from 1 h of electro-Fenton pretreatment, the electrolysis by-products were considered biodegradable. A biological treatment of the electrolysis by-products after 1 and 2 h was then realized. The mineralization yields reached very close values, about 84% for 1 and 2 h of electrolysis after 504 h of biological treatment, namely close to 89% for the overall process, showing the pertinence of the proposed coupled process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.