Karrikins and strigolactones are two classes of butenolide molecules that have diverse effects on plant growth. Karrikins are found in smoke and strigolactones are plant hormones, yet both molecules are likely recognized through highly similar signaling mechanisms. Here we review the most recent discoveries of karrikin and strigolactone perception and signal transduction. Two paralogous α/β hydrolases, KAI2 and D14, are respectively karrikin and strigolactone receptors. D14 acts with an F-box protein, MAX2, to target SMXL/D53 family proteins for proteasomal degradation, and genetic data suggest that KAI2 acts similarly. There are striking parallels in the signaling mechanisms of karrikins, strigolactones, and other plant hormones, including auxins, jasmonates, and gibberellins. Recent investigations of host perception in parasitic plants have demonstrated that strigolactone recognition can evolve following gene duplication of KAI2.
SUMMARYTwenty years ago, N-acylethanolamines (NAEs) were considered by many lipid chemists to be biological 'artifacts' of tissue damage, and were, at best, thought to be minor lipohilic constituents of various organisms. However, that changed dramatically in 1993, when anandamide, an NAE of arachidonic acid (N-arachidonylethanolamine), was shown to bind to the human cannabinoid receptor (CB1) and activate intracellular signal cascades in mammalian neurons. Now NAEs of various types have been identified in diverse multicellular organisms, in which they display profound biological effects. Although targets of NAEs are still being uncovered, and probably vary among eukaryotic species, there appears to be remarkable conservation of the machinery that metabolizes these bioactive fatty acid conjugates of ethanolamine. This review focuses on the metabolism and functions of NAEs in higher plants, with specific reference to the formation, hydrolysis and oxidation of these potent lipid mediators. The discussion centers mostly on early seedling growth and development, for which NAE metabolism has received the most attention, but also considers other areas of plant development in which NAE metabolism has been implicated. Where appropriate, we indicate cross-kingdom conservation in NAE metabolic pathways and metabolites, and suggest areas where opportunities for further investigation appear most pressing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.