We show that string theories admit chiral infinite tension analogues in which only the massless parts of the spectrum survive. Geometrically they describe holomorphic maps to spaces of complex null geodesics, known as ambitwistor spaces. They have the standard critical space-time dimensions of string theory (26 in the bosonic case and 10 for the superstring). Quantization leads to the formulae for tree-level scattering amplitudes of massless particles found recently by Cachazo, He and Yuan. These representations localize the vertex operators to solutions of the same equations found by Gross and Mende to govern the behaviour of strings in the limit of high energy, fixed angle scattering. Here, localization to the scattering equations emerges naturally as a consequence of working on ambitwistor space. The worldsheet theory suggests a way to extend these amplitudes to spinor fields and to loop level. We argue that this family of string theories is a natural extension of the existing twistor string theories.
A Palatini-type formulation of gravity coupled to matter and supergravity is given, in which the gravitational variables are a trio of self-dual 2-forms and an SL(2,C) connection. The action is polynomial in all the fields. This framework is shown to be the natural covariantization of Ashtekar's canonical formalism (1988), and is used to find the general vacuum solution of the four initial value constraints associated with spacetime diffeomorphisms in that formalism.
Dual superconformal invariance has recently emerged as a hidden symmetry of planar scattering amplitudes in N = 4 super Yang-Mills theory. This symmetry can be made manifest by expressing amplitudes in terms of 'momentum twistors', as opposed to the usual twistors that make the ordinary superconformal properties manifest. The relation between momentum twistors and on-shell momenta is algebraic, so the translation procedure does not rely on any choice of space-time signature. We show that tree amplitudes and box coefficients are succinctly generated by integration of holomorphic δ-functions in momentum twistors over cycles in a Grassmannian. This is analogous to, although distinct from, recent results obtained by Arkani-Hamed et al. in ordinary twistor space. We also make contact with Hodges' polyhedral representation of NMHV amplitudes in momentum twistor space.
The scattering equations on the Riemann sphere give rise to remarkable formulae for tree-level gauge theory and gravity amplitudes. Adamo, Casali and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulae, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n-gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.