Maintenance of biodiversity through seed banks and botanical gardens, where the wealth of species' genetic variation may be preserved ex situ, is a major goal of conservation. However, challenges can persist in optimizing ex situ collections if trade-offs exist among cost, effort, and conserving species evolutionary potential, particularly when genetic data are not available. We evaluated the genetic consequences of population preservation informed by geographic (isolation by distance [IBD]) and environmental (isolation by environment [IBE]) distance for ex situ collections for which population provenance is available. We used 19 genetic and genomic data sets from 15 plant species to assess the proportion of population genetic differentiation explained by geographic and environmental factors and to simulate ex situ collections prioritizing source populations based on pairwise geographic distance, environmental distance, or both. Specifically, we tested the impact prioritizing sampling based on these distances may have on the capture of neutral, functional, or putatively adaptive genetic diversity and differentiation. Individually, IBD and IBE explained limited population genetic differences across all 3 genetic marker classes (IBD, 10-16%; IBE, 1-5.5%). Together, they explained a substantial proportion of population genetic differences for functional (45%) and adaptive (71%) variation. Simulated ex situ collections revealed that inclusion of IBD, IBE, or both increased allelic diversity and genetic differentiation captured among populations, particularly for loci that may be important for adaptation. Thus, prioritizing population collections based on environmental and geographic distance data can optimize genetic variation captured ex situ. For the vast majority of plant species for which there is no genetic information, these data are invaluable to conservation because they can guide preservation of genetic variation needed to maintain evolutionary potential within collections.
Understanding the contribution of neutral and adaptive evolutionary processes to population differentiation is often necessary for better informed management and conservation of rare species. In this study, we focused on Pinus torreyana Parry (Torrey pine), one of the world's rarest pines, endemic to one island and one mainland population in California. Small population size, low genetic diversity, and susceptibility to abiotic and biotic stresses suggest Torrey pine may benefit from interpopulation genetic rescue to preserve the species' evolutionary potential. We leveraged reduced representation sequencing to tease apart the respective contributions of stochastic and deterministic evolutionary processes to population differentiation. We applied these data to model spatial and temporal demographic changes in effective population sizes and genetic connectivity, to identify loci possibly under selection, and evaluate genetic rescue as a potential conservation strategy. Overall, we observed exceedingly low standing variation within both Torrey pine populations, reflecting consistently low effective population sizes across time, and limited genetic differentiation, suggesting maintenance of gene flow between populations following divergence. However, genome scans identified more than 2000 candidate SNPs potentially under divergent selection. Combined with previous observations indicating population phenotypic differentiation, this indicates natural selection has probably contributed to the evolution of population genetic differences. Thus, while reduced genetic diversity, small effective population size, and genetic connectivity between populations suggest genetic rescue could mitigate the adverse effects of rarity, evidence for adaptive differentiation suggests genetic mixing could disrupt adaptation. Further work evaluating the fitness consequences of inter‐population admixture is necessary to empirically evaluate the trade‐offs associated with genetic rescue in Torrey pine.
Understanding the contribution of neutral and adaptive evolutionary processes to population differences is often necessary for better informed management and conservation of rare species. In this study, we focused on Pinus torreyana Parry (Torrey pine), one of the world's rarest pines, endemic to one island and one mainland population in California. Small population size, low genetic diversity, and susceptibility to abiotic and biotic stresses suggest Torrey pine may benefit from inter-population genetic rescue to preserve the species' evolutionary potential. We leveraged reduced representation sequencing to tease apart the respective contributions of stochastic and deterministic evolutionary processes to population differentiation. We applied these data to model spatial and temporal demographic changes in effective population sizes and genetic connectivity, to assess loci possibly under selection, and evaluate genetic rescue as a potential conservation strategy. Overall, we observed exceedingly low standing variation reflecting consistently low effective population sizes across time and limited genetic differentiation suggesting maintenance of gene flow following divergence. However, genome scans identified more than 2000 SNPs candidates for divergent selection. Combined with previous observations indicating population phenotypic differentiation, this indicates that natural selection has likely contributed to population genetic differences. Thus, while reduced genetic diversity, small effective population size, and genetic connectivity between populations suggest genetic rescue could mitigate the adverse effect of rarity, divergent selection between populations indicates that genetic mixing could disrupt adaptation. Further work evaluating the fitness consequences of inter-population admixture is necessary to empirically evaluate the trade-offs associated with genetic rescue in Torrey pine.
Background Understanding the within- and among-population distribution of trait variation within seed collections may provide a means to approximate standing genetic variation and inform plant conservation. Aims This study aimed to estimate population- and family-level seed trait variability for existing seed collections of Torrey pine (Pinus torreyana), and to use these data to guide sampling of future collections. Methods We quantified variation in 14 seed morphological traits and seedling emergence within and among Torrey pine populations. Using a simulation-based approach, we used estimates of within-population variance to assess the number of maternal families required to capture 95% of trait variation within each existing seed collection. Results Substantial structure was observed both within and among Torrey pine populations, with island and mainland seeds varying in seed size and seed coat thickness. Despite morphological differences, seedling emergence was similar across populations. Simulations revealed that 83% and 71% of all maternal families within island and mainland seed collections respectively needed to be resampled to capture 95% of seed trait variation within existing collections. Conclusions From a conservation perspective, our results indicate that to optimize genetic diversity captured in Torrey pine seed collections, maximizing the number of maternal families sampled within each population will be necessary.
Globally imperiled ecosystems often depend upon collection, propagation, and storage of seed material for use in restoration. However, during the restoration process demographic changes, population bottlenecks, and selection can alter the genetic composition of seed material, with potential impacts for restoration success. The evolutionary outcomes associated with these processes have been demonstrated using theoretical and experimental frameworks, but no study to date has examined their impact on the seed material maintained for conservation and restoration. In this study, we compare genomic variation across seed sources used in conservation and restoration for the perennial prairie plant Helianthus maximiliani, a key component of restorations across North American grasslands. We compare individuals sourced from contemporary wild populations, ex situ conservation collections, commercially produced restoration material, and two populations selected for agronomic traits. Overall, we observed that ex situ and contemporary wild populations exhibited similar genomic composition, while four of five commercial populations and selected lines were differentiated from each other and other seed source populations. Genomic differences across seed sources could not be explained solely by isolation by distance nor directional selection. We did find evidence of sampling effects for ex situ collections, which exhibited significantly increased coancestry relative to commercial populations, suggesting increased relatedness. Interestingly, commercially sourced seed appeared to maintain an increased number of rare alleles relative to ex situ and wild contemporary seed sources. However, while commercial seed populations were not genetically depauperate, the genomic distance between wild and commercially produced seed suggests differentiation in the genomic composition could impact restoration success. Our results point toward the importance of genetic monitoring of seed sources used for conservation and restoration as they are expected to be influenced by the evolutionary processes that contribute to divergence during the restoration process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.