Current Control-Flow Integrity (CFI) implementations track control edges individually, insensitive to the context of preceding edges. Recent work demonstrates that this leaves sufficient leeway for powerful ROP attacks. Context-sensitive CFI, which can provide enhanced security, is widely considered impractical for real-world adoption. Our work shows that Context-sensitive CFI (CCFI) for both the backward and forward edge can be implemented efficiently on commodity hardware. We present PathArmor, a binary-level CCFI implementation which tracks paths to sensitive program states, and defines the set of valid control edges within the state context to yield higher precision than existing CFI implementations. Even with simple context-sensitive policies, PathArmor yields significantly stronger CFI invariants than context-insensitive CFI, with similar performance.
Much research has gone into making operating systems more amenable to recovery and more resilient to crashes. Traditional solutions rely on partitioning the operating system (OS) to contain the effects of crashes within compartments and facilitate modular recovery. However, state dependencies among the compartments hinder recovery that is globally consistent. Such recovery typically requires expensive runtime dependency tracking which results in high performance overhead, high complexity and a large Reliable Computing Base (RCB). We propose a lightweight strategy that limits recovery to cases where we can statically and conservatively prove that compartment recovery leads to a globally consistent statetrading recoverable surface for a simpler and smaller RCB with lower performance overhead and maintenance cost. We present OSIRIS, a research OS design prototype that demonstrates efficient and consistent crash recovery. Our evaluation shows that OSIRIS effectively recovers from important classes of real-world software bugs with a modest RCB and low overheads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.