BackgroundHuman clear cell renal cell carcinoma (CRCC) remains resistant to therapies. Recent advances in Hypoxia Inducible Factors (HIF) molecular network led to targeted therapies, but unfortunately with only limited clinical significance. Elucidating the molecular processes involved in kidney tumorigenesis and resistance is central to the development of improved therapies, not only for kidney cancer but for many, if not all, cancer types. The oncogenic PI3K/Akt, NF-kB and MAPK pathways are critical for tumorigenesis. The sonic hedgehog (SHH) signaling pathway is crucial to normal development.ResultsBy quantitative RT-PCR and immunoblot, we report that the SHH signaling pathway is constitutively reactivated in tumors independently of the von Hippel-Lindau (VHL) tumor suppressor gene expression which is inactivated in the majority of CRCC. The inhibition of the SHH signaling pathway by the specific inhibitor cyclopamine abolished CRCC cell growth as assessed by cell counting, BrdU incorporation studies, fluorescence-activated cell sorting and β-galactosidase staining. Importantly, inhibition of the SHH pathway induced tumor regression in nude mice through inhibition of cell proliferation and neo-vascularization, and induction of apoptosis but not senescence assessed by in vivo studies, immunoblot and immunohistochemistry. Gli1, cyclin D1, Pax2, Lim1, VEGF, and TGF-β were exclusively expressed in tumors and were shown to be regulated by SHH, as evidenced by immunoblot after SHH inhibition. Using specific inhibitors and immunoblot, the activation of the oncogenic PI3K/Akt, NF-kB and MAPK pathways was decreased by SHH inhibition.ConclusionsThese findings support targeting SHH for the treatment of CRCC and pave the way for innovative and additional investigations in a broad range of cancers.
Human conventional renal cell carcinoma (CRCC) remains resistant to therapy. The RNA-binding protein HuR regulates the stability and/or translation of multiple messenger RNAs involved in malignant transformation. In this study, we aimed to evaluate the potential role of HuR in this pathology. Using seven human CRCC cell lines expressing or not the von Hippel-Lindau (VHL) tumor suppressor gene as well as 15 normal/renal cell carcinoma tumor pairs, we showed that HuR is overexpressed in all tumors independently of the VHL status. Futhermore, HuR cytoplasmic presence appears to be more common in early tumor stages, suggesting a role in tumor promotion. We then assessed the effect of HuR knockdown using small interfering RNA in cultured cell and in tumor-bearing mice. Both in vitro and in vivo, we observed that cell growth was inhibited by 60% and that this effect was obtained through an inhibition of cell proliferation and an induction of cell apoptosis. Finally, we found that expression of vascular endothelium growth factor, tumor growth factor-beta and of the hypoxia-induced transcription factor-2alpha as well as the constitutive activation of the oncogenic phosphoinositide 3-kinase/Akt, nuclear factor-kappaB and mitogen-activated protein kinase pathways were decreased in HuR-depleted cells and tumors. All these results suggest a pivotal role for HuR in human CRCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.