It has been suggested that the distribution of the suitably normalized number of zeros of Laplacian eigenfunctions contains information about the geometry of the underlying domain. We study this distribution (more precisely, the distribution of the "nodal surplus") for Laplacian eigenfunctions of a metric graph. The existence of the distribution is established, along with its symmetry. One consequence of the symmetry is that the graph's first Betti number can be recovered as twice the average nodal surplus of its eigenfunctions. Furthermore, for graphs with disjoint cycles it is proven that the distribution has a universal form -it is binomial over the allowed range of values of the surplus. To prove the latter result, we introduce the notion of a local nodal surplus and study its symmetry and dependence properties, establishing that the local nodal surpluses of disjoint cycles behave like independent Bernoulli variables.
The nodal set of a Laplacian eigenfunction forms a partition of the underlying manifold or graph. Another natural partition is based on the gradient vector field of the eigenfunction (on a manifold) or on the extremal points of the eigenfunction (on a graph). The submanifolds (or subgraphs) of this partition are called Neumann domains. This paper reviews the subject, as appears in [2,6,7,46,62] and points out some open questions and conjectures. The paper concerns both manifolds and metric graphs and the exposition allows for a comparison between the results obtained for each of them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.