We have previously demonstrated that insulin activates farnesyltransferase (FTase) and augments the amounts of farnesylated p21 ras (Goalstone, M. L., and Draznin, B. (1996) J. Biol. Chem. 271, 27585-27589). We postulated that this aspect of insulin action might explain the "priming effect" of insulin on the cellular response to other growth factors. In the present study, we show the specificity of the effect of insulin on FTase. Insulin, but not insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), or platelet-derived growth factor (PDGF), stimulated the phosphorylation of the ␣-subunit of FTase and the amounts of farnesylated p21ras . Even though all four growth factors utilized the Ras pathway to stimulate DNA synthesis, only insulin used this pathway to influence FTase. Insulin failed to stimulate FTase in cells expressing the chimeric insulin/ IGF-1 receptor and in cells derived from the insulin receptor knock-out animals. Insulin potentiated the effects of IGF-1, EGF, and PDGF on DNA synthesis in cells expressing the wild type insulin receptor, but this potentiation was inhibited in the presence of the FTase inhibitor, ␣-hydroxyfarnesylphosphonic acid. We conclude that the effect of insulin on FTase is specific, requires the presence of an intact insulin receptor, and serves as a conduit for the "priming" influence of insulin on the nuclear effects of other growth factors.
Fibrotic lung diseases represent a diverse group of progressive and often fatal disorders with limited treatment options. Although the pathogenesis of these conditions remains incompletely understood, receptor type protein tyrosine phosphatase α (PTP-α encoded by PTPRA) has emerged as a key regulator of fibroblast signaling. We previously reported that PTP-α regulates cellular responses to cytokines and growth factors through integrin-mediated signaling and that PTP-α promotes fibroblast expression of matrix metalloproteinase 3, a matrix-degrading proteinase linked to pulmonary fibrosis. Here, we sought to determine more directly the role of PTP-α in pulmonary fibrosis. Mice genetically deficient in PTP-α (Ptpra(-/-)) were protected from pulmonary fibrosis induced by intratracheal bleomycin, with minimal alterations in the early inflammatory response or production of TGF-β. Ptpra(-/-) mice were also protected from pulmonary fibrosis induced by adenoviral-mediated expression of active TGF-β1. In reciprocal bone marrow chimera experiments, the protective phenotype tracked with lung parenchymal cells but not bone marrow-derived cells. Because fibroblasts are key contributors to tissue fibrosis, we compared profibrotic responses in wild-type and Ptpra(-/-) mouse embryonic and lung fibroblasts. Ptpra(-/-) fibroblasts exhibited hyporesponsiveness to TGF-β, manifested by diminished expression of αSMA, EDA-fibronectin, collagen 1A, and CTGF. Ptpra(-/-) fibroblasts exhibited markedly attenuated TGF-β-induced Smad2/3 transcriptional activity. We conclude that PTP-α promotes profibrotic signaling pathways in fibroblasts through control of cellular responsiveness to TGF-β.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.