We describe a simple method of fabricating gold tips for tip-enhanced near-field optical microscopy using a single step direct current electrochemical etch. Smooth gold tips with a radius of curvature approximately 40 nm and with an aspect ratio suitable for shear force measurement have been produced in a few minutes. A detailed analysis of the etching process has enabled production of reproducible high quality tips. Near field images of single quantum dots using tips etched with this technique are shown.
We report modifications to the optical properties of fluorophores in the vicinity of noble metal nanotips. The fluorescence from small clusters of quantum dots has been imaged using an apertureless scanning near-field optical microscope. When a sharp gold tip is brought close to the sample surface, a strong distancedependent enhancement of the quantum dot fluorescence is observed, leading to a simultaneous increase in optical resolution. These results are consistent with simulations of the electric field and fluorescence enhancement near plasmonic nanostructures. Highly ordered periodic arrays of silver nanotips have been fabricated by nanosphere lithography. Using fluorescence lifetime imaging microscopy, we have created high-resolution spatial maps of the lifetime components of vicinal fluorophores; these show an order of magnitude increase in decay rate from a localized volume around the nanotips, resulting in a commensurate enhancement in the fluorescence emission intensity. Spatial maps of the Raman scattering signal from molecules on the nanotips shows an enhancement of more than five orders of magnitude.Keywords scanning near-field optical microscopy · ASNOM · fluorescence lifetime imaging · FLIM · plasmon · nanoparticle · Raman · SERS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.