We have measured weak antilocalization effects, universal conductance fluctuations, and Aharonov-Bohm oscillations in the two-dimensional electron gas formed in InGaAs/AlInAs heterostructures. This system possesses strong spin-orbit coupling and a high Landé factor. Phase-coherence lengths of 2 -4 μm at 1.5 -4.2 K are extracted from the magnetoconductance measurements. The analysis of the coherencesensitive data reveals that the temperature dependence of the decoherence rate complies with the dephasing mechanism originating from electron-electron interactions in all three experiments. Distinct beating patterns superimposed on the AharonovBohm oscillations are observed over a wide range of magnetic fields, up to 0.7 Tesla at the relatively high temperature of 1.5 K. The possibility that these beats are due to the interplay between the Aharonov-Bohm phase and the Berry one, different for electrons of opposite spins in the presence of strong spin-orbit and Zeeman interactions in ring geometries, is carefully investigated. It appears that our data are not explained by this mechanism; rather, a few geometrically-different electronic paths within the ring's width can account for the oscillations' modulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.