The development of novel affinity probes for cancer biomarkers may enable powerful improvements in analytical methods for detecting and treating cancer. In this report, we describe our use of capillary electrophoresis (CE) as the separation mechanism in the process of selecting DNA aptamers with affinity for the ovarian cancer biomarker HE4. Rather than the conventional use of cloning and sequencing as the last step in the aptamer selection process, we used high-throughput sequencing on an Illumina platform. This data-rich approach, combined with a bioinformatics pipeline based on freely available computational tools, enabled the entirety of the selection process—and not only its endpoint—to be characterized. Affinity probe CE and fluorescence anisotropy assays demonstrate the binding affinity of a set of aptamer candidates identified through this bioinformatics approach.Graphical AbstractA population of candidate aptamers is sequenced on an Illumina platform, enabling the process by which aptamers are selected over multiple SELEX rounds to be characterized. Bioinformatics tools are used to identify enrichment of selected aptamers and groupings into clusters based on sequence and structural similarity. A subset of sequenced aptamers may be intelligently chosen for in vitro testing.
Abstract.Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters, and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied with experimental methods. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprenederived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of similar magnitudes, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of nonepoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.
Recent work has suggested that 2-methyl-3-butene-2-ol (MBO)-derived epoxide intermediates are responsible for some of the molecular species commonly found in ambient secondary organic aerosol (SOA). Nuclear magnetic resonance techniques were used to study the reaction kinetics and products of two potential MBO-derived epoxides under acidic solution conditions in the presence of sulfate and nitrate nucleophiles. These epoxides were found to undergo reasonably fast acid-catalyzed reaction at typical SOA acidities and to produce a variety of organosulfate and nitrate species. This finding supports a previous supposition that 3-methylbutane-1,2,3-triol and at least some of the MBO-derived organosulfates previously detected on SOA are formed from the reactions of these epoxides. In general, the particular MBO-derived organosulfates and nitrates produced from MBO-derived epoxides and their respective stability toward hydrolysis were similar to those found for isoprene-derived epoxides; the nucleophilic reactions were observed to be quite regiospecific, and the tertiary addition product species were found to hydrolyze on atmospherically relevant time scales.
Abstract. Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of a similar magnitude, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity-dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.