Summary There is pressing need to develop alternatives to annual influenza vaccines and antiviral agents licensed for mitigating influenza infection. Previous studies reported that acute lung injury (ALI) caused by chemical or microbial insults is secondary to generation of host-derived, oxidized phospholipid that potently stimulates Toll-like Receptor 4 (TLR4)-dependent inflammation1. Subsequently, we reported that TLR4−/− mice are highly refractory to influenza-induced lethality2, and hypothesized that therapeutic antagonism of TLR4 signaling would protect against influenza-induced ALI. Herein, we report that therapeutic administration of Eritoran (E5564), a potent, well-tolerated, synthetic TLR4 antagonist3,4, blocks influenza-induced lethality in mice, as well as lung pathology, clinical symptoms, cytokine and oxidized phospholipid expression, and decreases viral titers. CD14 and TLR2 are also required for Eritoran-mediated protection, and CD14 directly binds Eritoran and inhibits ligand binding to MD2. Thus, Eritoran blockade of TLR signaling represents a novel therapeutic approach for inflammation associated with influenza, and possibly other, infections.
Severe RSV-induced bronchiolitis has been associated with a mixed “Th1” and “Th2” cytokine storm. We hypothesized that differentiation of “alternatively activated” macrophages (AA-Mϕ) would mediate resolution of RSV-induced lung injury. RSV induced IL-4 and IL-13 by murine lung and peritoneal macrophages, IL-4Rα/STAT6-dependent AA-Mϕ differentiation, and significantly enhanced inflammation in lungs of IL-4Rα−/− mice. Adoptive transfer of wild type (WT) macrophages to IL-4Rα−/− mice restored RSV-inducible AA-Mϕ phenotype and diminished lung pathology. RSV-infected TLR4−/− and IFN-β−/− macrophages and mice also failed to express AA-Mϕ markers, but exhibited sustained proinflammatory cytokine production (e.g., IL-12) in vitro and in vivo and epithelial damage in vivo. TLR4 signaling is required for PPARγ expression, a DNA-binding protein that induces AA-Mϕ genes, while IFN-β regulates IL-4, IL-13, IL-4Rα, and IL-10 expression in response to RSV. RSV-infected cotton rats treated with a COX-2 inhibitor increased expression of lung AA-Mϕ. These data suggest new treatment strategies for RSV that promote AA-Mϕ differentiation.
Influenza A virus continues to cause annual epidemics. The emergence of avian viruses in the human population poses a pandemic threat, and has highlighted the need for more effective influenza vaccines and antivirals. Development of such therapeutics would be enhanced by the use of a small-animal model that is permissive for replication of human influenza virus, and for which reagents are available to dissect the host response. A model is presented of nasal and pulmonary infection in adult inbred cotton rats (Sigmodon hispidus) that does not require viral 'adaptation'. It was previously demonstrated that animals infected intranasally with 10 7 TCID 50 of a recent H3N2 influenza, A/Wuhan/359/95, have increased breathing rates. In this report it is shown that this is accompanied by weight loss and decreased temperature. Virus replication peaked within 24 h in the lung, with peak titres proportional to the infecting dose, clearing by day 3. Replication was more permissive in nasal tissues, and persisted for 6 days. Pulmonary pathology included early bronchiolar epithelial cell damage, followed by extensive alveolar and interstitial pneumonia, which persisted for nearly 3 weeks. Interleukin 1 alpha (IL1a), alpha interferon (IFN-a), IL6, tumour necrosis factor alpha (TNF-a), GROa and MIP-1b mRNA were elevated soon after infection, and expression coincided with virus replication. A biphasic response was observed for RANTES, IFN-c, IL4, IL10 and IL12-p40, with increased mRNA levels early during virus replication followed by a later increase that coincided with pulmonary inflammation. These results indicate that cotton rats will be useful for further studies of influenza pathogenesis and immunity.
Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2−/− macrophages, where MD-2−/− macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4–CD14–MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology.
We previously reported that TLR4-/- mice are refractory to mouse-adapted A/PR/8/34 (PR8) influenza-induced lethality and that therapeutic administration of the TLR4 antagonist, Eritoran, blocked PR8-induced lethality and acute lung injury (ALI) when given starting 2 days post-infection. Herein, we extend these findings: anti-TLR4- or TLR2-specific IgG therapy also conferred significant protection of wild-type (WT) mice from lethal PR8 infection. If treatment is initiated 3 h prior to PR8 infection and continued daily for 4 days, Eritoran failed to protect WT and TLR4-/- mice, implying that Eritoran must block a virus-induced, non-TLR4 signal that is required for protection. Mechanistically, we determined that (i) Eritoran blocks HMGB1-mediated, TLR4-dependent signaling in vitro and circulating HMGB1 in vivo, and an HMGB1 inhibitor protects against PR8; (ii) Eritoran inhibits pulmonary lung edema associated with ALI, (iii) IL-1β contributes significantly to PR8-induced lethality, as evidenced by partial protection by IL-1 receptor antagonist (IL-1Ra) therapy. Synergistic protection against PR8-induced lethality was achieved when Eritoran and the anti-viral drug, oseltamivir, were administered starting 4 days post-infection. Eritoran treatment does not prevent development of an adaptive immune response to subsequent PR8 challenge. Overall, our data support the potential of a host-targeted therapeutic approach to influenza infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.