Summary
Maternal infection during pregnancy is associated with adverse outcomes
for the fetus, including postnatal cognitive disorders. However, the underlying
mechanisms are obscure. We find that bacterial cell wall peptidoglycan (CW), a
universal PAMP for TLR2, traverses across the murine placenta into the
developing fetal brain. In contrast to adults, CW-exposed fetal brains did not
show any signs of inflammation or neuronal death. Instead, the neuronal
transcription factor FoxG1 was induced and neuroproliferation leading to a
50% greater density of neurons in the cortical plate was observed.
Bacterial infection of pregnant dams followed by antibiotic treatment, which
releases CW, yielded the same result. Neuroproliferation required TLR2 and was
recapitulated in vitro with fetal neuronal precursor cells and TLR2/6, but not
TLR2/1 ligands. The fetal neuroproliferative response correlated with abnormal
cognitive behavior in CW-exposed pups following birth. Thus, the bacterial
CW-TLR2 signaling axis affects fetal neurodevelopment and may underlie postnatal
cognitive disorders.
Herpes simplex virus (HSV) glycoprotein D (gD) not only is required for virus entry and cell-to-cell spread but also binds the host immunomodulatory molecule, HVEM, blocking interactions with its ligands. Natural infection primarily elicits neutralizing antibodies targeting gD, but subunit protein vaccines designed to induce this response have failed clinically. In contrast, preclinical studies demonstrate that an HSV-2 single-cycle strain deleted in gD, ΔgD-2, induces primarily non-neutralizing antibodies that activate Fcγ receptors (FcγRs) to mediate antibody-dependent cellular cytotoxicity (ADCC). These studies were designed to test the hypothesis that gD interferes with ADCC through engagement of HVEM. Immunization of Hvem−/− mice with ΔgD-2 resulted in significant reduction in HSV-specific IgG2 antibodies, the subclass associated with FcγR activation and ADCC, compared with wild-type controls. This translated into a parallel reduction in active and passive vaccine protection. A similar decrease in ADCC titers was observed in Hvem−/− mice vaccinated with an alternative HSV vaccine candidate (dl5-29) or an unrelated vesicular stomatitis virus–vectored vaccine. Unexpectedly, not only did passive transfer of immune serum from ΔgD-2–vaccinated Hvem−/− mice fail to protect wild-type mice but transfer of immune serum from ΔgD-2–vaccinated wild-type mice failed to protect Hvem−/− mice. Immune cells isolated from Hvem−/− mice were impaired in FcγR activation, and, conversely, addition of gD protein or anti-HVEM antibodies to in vitro murine or human FcγR activation assays inhibited the response. These findings uncover a previously unrecognized role for HVEM signaling in generating and mediating ADCC and an additional HSV immune evasion strategy.
Background
Neonatal herpes simplex virus (HSV) disease results in unacceptable morbidity and mortality. The primary humoral immune response to natural infection is neutralizing antibodies (Abs). However, Abs that activate Fc gama receptors (FcγRs) and mediate antibody-dependent cell-mediated cytotoxicity (ADCC) may play a dominant role in protection. In adult mice, a single-cycle HSV candidate vaccine deleted in glycoprotein-D (ΔgD-2) that induces ADCC provided complete protection against HSV disease and prevented the establishment of latency. Passive transfer studies showed that Abs were sufficient for protection. The current study tested the hypothesis that maternal immunization with ΔgD-2 would protect neonates.
Methods
C57BL/6 female mice were vaccinated 3 weeks apart with ΔgD-2, and pups were challenged at different times postnatally with lethal doses of HSV-1 or HSV-2. Concentration and functionality of Abs and immune cells were assessed.
Results
Maternal ΔgD-2 immunization provided significant protection and reduced viral dissemination after lethal challenge with HSV-1 or HSV-2. Protection correlated with Abs acquired transplacentally or from breastmilk that mediated ADCC. Protection was reduced when pups were challenged on Day 1 of life, and this was associated with decreased ability of newborn cells to mediate Ab-dependent cell killing.
Conclusions
Antibodies mediating ADCC provide significant protection against neonatal HSV.
SynopsisSeveral clathrin-independent endocytic pathway components have been implicated as regulatory factors exploited by neonatal meningitis-causing Escherichia coli K1 bacteria to infect host cells. Here we demonstrate that the bacteria induce general cell ruffling, increased fluid phase uptake, and actin-, Rho GTPase-and cholesteroldependent invasion, which all point to a requirement for macropinocytosis as the route of uptake by the bacteria into non-phagocytic brain microvascular endothelial cells.
AbstractEukaryotic cells utilise multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into HBMEC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.