Electric Vehicle (EV) charging demand and charging station availability forecasting is one of the challenges in the intelligent transportation system. With accurate EV station availability prediction, suitable charging behaviors can be scheduled in advance to relieve range anxiety. Many existing deep learning methods have been proposed to address this issue; however, due to the complex road network structure and complex external factors, such as points of interest (POIs) and weather effects, many commonly used algorithms can only extract the historical usage information and do not consider the comprehensive influence of external factors. To enhance the prediction accuracy and interpretability, the Attribute-Augmented Spatiotemporal Graph Informer (AST-GIN) structure is proposed in this study by combining the Graph Convolutional Network (GCN) layer and the Informer layer to extract both the external and internal spatiotemporal dependence of relevant transportation data. The external factors are modeled as dynamic attributes by the attributeaugmented encoder for training. The AST-GIN model was tested on the data collected in Dundee City, and the experimental results showed the effectiveness of our model considering external factors’ influence on various horizon settings compared with other baselines.
Dengue, a mosquito-transmitted viral disease, has posed a public health challenge to Singaporean residents over the years. In 2020, Singapore experienced an unprecedented dengue outbreak. We collected a dataset of geographical dengue clusters reported by the National Environment Agency (NEA) from 15 February to 9 July in 2020, covering the nationwide lockdown associated with Covid-19 during the period from 7 April to 1 June. NEA regularly updates the dengue clusters during which an infected person may be tagged to one cluster based on the most probable infection location (residential apartment or workplace address), which is further matched to fine-grained spatial units with an average coverage of about 1.35 km2. Such dengue cluster dataset helps not only reveal the dengue transmission patterns, but also reflect the effects of lockdown on dengue spreading dynamics. The resulting data records are released in simple formats for easy access to facilitate studies on dengue epidemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.