During the afternoon of 28 April 2015, a multicellular convective system swept southward through much of Jiangsu Province, China, over about 7 h, producing egg-sized hailstones on the ground. The hailstorm event is simulated using the Advanced Regional Prediction System (ARPS) at 1-km grid spacing. Different configurations of the Milbrandt–Yau microphysics scheme are used, predicting one, two, and three moments of the hydrometeor particle size distributions (PSDs). Simulated reflectivity and maximum estimated size of hail (MESH) derived from the simulations are verified against reflectivity observed by operational S-band Doppler radars and radar-derived MESH, respectively. Comparisons suggest that the general evolution of the hailstorm is better predicted by the three-moment scheme, and neighborhood-based MESH evaluation further confirms the advantage of the three-moment scheme in hail size prediction. Surface accumulated hail mass, number, and hail distribution characteristics within simulated storms are examined across sensitivity experiments. Results suggest that multimoment schemes produce more realistic hail distribution characteristics, with the three-moment scheme performing the best. Size sorting is found to play a significant role in determining hail distribution within the storms. Detailed microphysical budget analyses are conducted for each experiment, and results indicate that the differences in hail growth processes among the experiments can be mainly ascribed to the different treatments of the shape parameter within different microphysics schemes. Both the differences in size sorting and hail growth processes contribute to the simulated hail distribution differences within storms and at the surface.
A Ge/Si heterojunction light emitting diode with a p+-Ge/i-Ge/N+–Si structure was fabricated using the ultrahigh vacuum chemical vapor deposition technology on N+–Si substrate. The device had a good I-V rectifying behavior. Under forward bias voltage ranging from 1.1 to 2.5 V, electroluminescence around 1565 nm was observed at room temperature. The mechanism of the light emission is discussed by the radiative lifetime and the scattering rate. The results indicate that germanium is a potential candidate for silicon-based light source material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.