Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeine- but not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide.
Human serum albumin (HSA) is widely used in clinical and cell culture applications. Conventional production of HSA from human blood is limited by the availability of blood donation and the high risk of viral transmission from donors. Here, we report the production of Oryza sativa recombinant HSA (OsrHSA) from transgenic rice seeds. The level of OsrHSA reached 10.58% of the total soluble protein of the rice grain. Large-scale production of OsrHSA generated protein with a purity >99% and a productivity rate of 2.75 g/kg brown rice. Physical and biochemical characterization of OsrHSA revealed it to be equivalent to plasma-derived HSA (pHSA). The efficiency of OsrHSA in promoting cell growth and treating liver cirrhosis in rats was similar to that of pHSA. Furthermore, OsrHSA displays similar in vitro and in vivo immunogenicity as pHSA. Our results suggest that a rice seed bioreactor produces cost-effective recombinant HSA that is safe and can help to satisfy an increasing worldwide demand for human serum albumin.
The present study investigated the anti-obesity and anti-diabetic effects of kaempferol glycoside (KG) fractions which were composed of four kaempferol glycosides and purified from unripe Jindai-soybean (Edamame) leaves in C57BL/6J mice. High fat-fed mice treated with 0.15% dietary KG for 92 days had reduced body weight, adipose tissue and TG levels compared to the high fat-fed control group. KG-treatment also decreased fasting blood glucose, serum HbA1c (hemoglobin A(1c)) levels and improved insulin resistance. Gene expression analysis of the liver showed that KG decreased peroxisome proliferator-activated receptor (PPAR-γ) and sterol regulatory element-binding protein (SREBP-1c) expression. These results suggest that KG reduced the accumulation of adipose tissue, improving hyperlipidemia as well as diabetes in obese mice by increasing lipid metabolism through the downregulation of PPAR-γ and SREBP-1c. Thus, KG may have an anti-obesity and anti-diabetic potential.
Hydrogen sulfide (H2S) is a gasotransmitter and plays an important role in many physiological processes in mammals. Studies of its functions in plants are attracting ever growing interest, for example, its ability to enhance drought resistance in Arabidopsis. A general role of microRNAs (miRNAs) in plant adaptive responses to drought stress has thereby increased our interest to delve into the possible interplay between H2S and miRNAs. Our results showed that treating wild type (WT) Arabidopsis seedlings with polyethylene glycol 8000 (PEG8000) to simulate drought stress caused an increase in production rate of endogenous H2S; and a significant transcriptional reformation of relevant miRNAs, which were also triggered by exogenous H2S in WT. When lcd mutants (with lower H2S production rate than WT) were treated with PEG8000, they showed lower levels of miRNA expression changes than WT. In addition, we detected significant changes in target gene expression of those miRNAs and the corresponding phenotypes in lcd, including less roots, retardation of leaf growth and development and greater superoxide dismutase (SOD) activity under drought stress. We thereby conclude that H2S can improve drought resistance through regulating drought associated miRNAs in Arabidopsis.
Necrotrophic fungi cause devastating diseases in both horticultural and agronomic crops, but our understanding of plant defense responses against these pathogens is still limited. In this study, we demonstrated that AtWRKY75 positively regulates the jasmonate (JA)-mediated plant defense against necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola and also affects plants’ sensitivity to JA-inhibited seed germination and root growth. Quantitative RT-PCR analysis indicated that the expression of several JA-associated genes, such as ORA59 and PDF1.2, was significantly reduced in wrky75 mutants and significantly enhanced in 35S:WRKY75 transgenic plants. Immunoprecipitation assays revealed that WRKY75 directly binds to ORA59 promoters and represses its transcription. In vivo and in vitro experiments suggested that WRKY75 interacts with several JASMONATE ZIM-domain proteins, which are repressors of the JA signaling pathway. We determined that JAZ8 represses the transcriptional function of WRKY75, thereby attenuating the expression of its regulon. Consistent with this finding, overexpression of JAZ8 repressed plant defense response to B. cinerea. Taken together, our study provides evidence that WRKY75 functions as a critical component of the JA-mediated signaling pathway to positively regulate Arabidopsis defense response to necrotrophic pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.