The impact of pristine multiwalled carbon nanotubes (MWCNTs), an ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], and the ionic liquid-modified MWCNTs (IL-MWCNTs) on the crystallization behavior of melt-crystallized poly(vinylidene fluoride) (PVDF) has been investigated. Pristine MWCNTs accelerate crystallization of PVDF as an efficient nucleation agent, while the formed crystals are mainly nonpolar α crystal form with few polar β crystals. Incorporation of only ionic liquid results in depression of the PVDF melt crystallization rate due to the miscibility of IL with PVDF but leads to a higher content of polar crystals (β and γ forms) than MWCNTs. The ionic liquid and MWCNTs show significant synergetic effects on both the nucleation and the formation of polar crystals for PVDF by melt crystallization. Addition of IL-MWCNTs not only improves the MWCNTs dispersion in PVDF matrix but also increases the overall crystallization rate of PVDF drastically. More important, the melt-crystallized PVDF nanocomposites with IL-MWCNTs show 100% polar polymorphs but no α crystal forms. To the best of our knowledge, this is the first report on the achievements of full polar crystal form in the melt-crystallized PVDF without mechanical deformation or electric field. The IL to MWCNTs ratio and the IL-MWCNTs loading content effects on the crystallization behavior of PVDF in the nanocomposites were also studied. It is considered that the specific interactions between >CF2 with the planar cationic imidazolium ring wrapped on the MWCNTs surface lead to the full zigzag conformations of PVDF; thus, nucleation in polar crystals (β and γ forms) lattice is achieved and full polar crystals are obtained by subsequent crystal growth from the nuclei.
Additive manufacturing (commonly known as 3D printing) is defined as a family of technologies that deposit and consolidate materials to create a 3D object as opposed to subtractive manufacturing methodologies. Fused deposition modeling (FDM), one of the most popular additive manufacturing techniques, has demonstrated extensive applications in various industries such as medical prosthetics, automotive, and aeronautics. As a thermal process, FDM may introduce internal voids and pores into the fabricated thermoplastics, giving rise to potential reduction on the mechanical properties. This paper aims to investigate the effects of the microscopic pores on the mechanical properties of material fabricated by the FDM process via experiments and micromechanical modeling. More specifically, the three-dimensional microscopic details of the internal pores, such as size, shape, density, and spatial location were quantitatively characterized by X-ray computed tomography (XCT) and, subsequently, experiments were conducted to characterize the mechanical properties of the material. Based on the microscopic details of the pores characterized by XCT, a micromechanical model was proposed to predict the mechanical properties of the material as a function of the porosity (ratio of total volume of the pores over total volume of the material). The prediction results of the mechanical properties were found to be in agreement with the experimental data as well as the existing works. The proposed micromechanical model allows the future designers to predict the elastic properties of the 3D printed material based on the porosity from XCT results. This provides a possibility of saving the experimental cost on destructive testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.