/npsi/ctrl?lang=en http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?lang=fr Access and use of this website and the material on it are subject to the Terms and Conditions set forth at http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/jsp/nparc_cp.jsp?lang=en NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous.http://dx.doi.org/10.1094/MPMI-09-11-0256Molecular Plant-Microbe Interactions, 25, 11, pp. 1459-1468, 2012 Arabidopsis Clade I TGA transcription factors regulate plant defenses in an NPR1-independent fashion Shearer, Heather L.; Cheng, Yu Ti; Wang, Lipu; Liu, Jinman; Boyle, Patrick; Després, Charles; Zhang, Yuelin; Li, Xin; Fobert, Pierre R.
Fusarium head blight (FHB or scab) caused by Fusarium spp. is a destructive disease of wheat. Since the most effective sources of FHB resistance are typically associated with unfavorable agronomic traits, breeding commercial cultivars that combine desired agronomic traits and a high level of FHB resistance remains a considerable challenge. A better understanding of the molecular mechanisms governing FHB resistance will help to design more efficient and precise breeding strategies. Here, multiple molecular tools and assays were deployed to compare the resistant variety Sumai3 with three regionally adapted Canadian cultivars. Macroscopic and microscopic disease evaluation established the relative level of Type II FHB resistance of the four varieties and revealed that the F. graminearum infection process displayed substantial temporal differences among organs. The rachis was found to play a critical role in preventing F. graminearum spread within spikes. Large-scale, organ-specific RNA-seq at different times after F. graminearum infection demonstrated that diverse defense mechanisms were expressed faster and more intensely in the spikelet of resistant varieties. The roles of plant hormones during the interaction of wheat with F. graminearum was inferred based on the transcriptomic data obtained and the quantification of the major plant hormones. Salicylic acid and jasmonic acid were found to play predominantly positive roles in FHB resistance, whereas auxin and ABA were associated with susceptibility, and ethylene appeared to play a dual role during the interaction with F graminearum.
BackgroundFusarium head blight (FHB), a scab principally caused by Fusarium graminearum Schw., is a serious disease of wheat. The purpose of this study is to evaluate the potential of combining synchrotron based phase contrast X-ray imaging (PCI) with Fourier Transform mid infrared (FTIR) spectroscopy to understand the mechanisms of resistance to FHB by resistant wheat cultivars. Our hypothesis is that structural and biochemical differences between resistant and susceptible cultivars play a significant role in developing resistance to FHB.ResultsSynchrotron based PCI images and FTIR absorption spectra (4000–800 cm−1) of the floret and rachis from Fusarium-damaged and undamaged spikes of the resistant cultivar ‘Sumai3’, tolerant cultivar ‘FL62R1’, and susceptible cultivar ‘Muchmore’ were collected and analyzed. The PCI images show significant differences between infected and non-infected florets and rachises of different wheat cultivars. However, no pronounced difference between non-inoculated resistant and susceptible cultivar in terms of floret structures could be determined due to the complexity of the internal structures. The FTIR spectra showed significant variability between infected and non-infected floret and rachis of the wheat cultivars. The changes in absorption wavenumbers following pathogenic infection were mostly in the spectral range from 1800–800 cm−1. The Principal Component Analysis (PCA) was also used to determine the significant chemical changes inside floret and rachis when exposed to the FHB disease stress to understand the plant response mechanism. In the floret and rachis samples, PCA of FTIR spectra revealed differences in cell wall related polysaccharides. In the florets, absorption peaks for Amide I, cellulose, hemicellulose and pectin were affected by the pathogenic fungus. In the rachis of the wheat cultivars, PCA underlines significant changes in pectin, cellulose, and hemicellulose characteristic absorption spectra. Amide II and lignin absorption peaks, persistent in the rachis of Sumai3, together with increased peak shift at 1245 cm−1 after infection with FHB may be a marker for stress response in which the cell wall compounds related to pathways for lignification are increased.ConclusionsSynchrotron based PCI combined with FTIR spectroscopy show promising results related to FHB in wheat. The combined technique is a powerful new tool for internal visualisation and biomolecular monitoring before and during plant-microbe interactions to understand both the differences between cultivars and their different responses to disease stress.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0357-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.