Textile wastewater including a large number of dyes and heavy metals can have adverse impacts on human health and surface water. In this work, biosorption Toluidine Blue from aqueous media onto natural Polypourus squamosus fungi as a low-cost biosorbent was investigated. Central Composite Design (CCD) in Response Surface Methodology (RSM) was successfully applied to optimize the biosorption condition. Medium parameters affected the biosorption of Toluidine Blue were determined to be initial pH, initial Toluidine Blue (Tb) concentration, temperature, and absorbent dosage. All experiments were carried out in a batch system using 250 mL flasks containing 100 mL of Toluidine Blue solution with a temperature-controlled magnetic stirrer. The Tb concentrations remaining in filtration solutions after biosorption were analyzed using UV-Spectro. With the obtained quadratic model, the optimal conditions for maximum biosorbed Toluidine blue were calculated to be 7, 27.5 mg/L, 35°C and 0.05 g for pH, C°, T (°C) and adsorbent dosage, respectively. Furthermore, most known isotherm models such as Langmuir and Freundlich were computed to find the best-fitted model.
The skin is the biggest sense organ in the body, with a surface area of 1.7m2 in adults. Because standard histological procedures influence skin components, several dermatological research has had little effectiveness in showing skin function. The structure of each skin layer may now be visualised non-invasively thanks to recent advances in non-invasive optical imaging. Individual skin components, on the other hand, remain difficult to identify. Understanding skin's chemical and physical features helps the cosmetics sector create deodorant, lipstick, and moisturizers. In addition, PH regulates the activation of proteases linked to the formation of chronic wounds and impacts skin barrier functions. Optical coherence tomography (OCT) is a non-invasive optical imaging innovation that creates high-resolution photos of the face and cross-areas of the skin. While OCT has a lot of potentials, many dermatologists are unfamiliar with it. This article aims to give professional dermatologists a basic grasp of skin OCT concepts and clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.