The intestinal epithelial barrier is important to mucosal immunity, although how it is maintained after damage is unclear. Here, we show that G protein-coupled receptor 109A (GPR109A) supports barrier integrity and decreases mortality in a mouse cecum ligation and puncture (CLP) sepsis model. Data from 16S RNA sequencing showed that the intestinal microbiota of WT and Gpr109a−/− mice clustered differently and their compositions were disrupted after CLP surgery. GPR109A-deficient mice showed increased mortality, intestinal permeability, altered inflammation, and lower tight junction gene expression. After eliminating the intestinal flora with antibiotics, all experimental mice died within 48 h of CLP surgery. This demonstrates the critical role of the gut microbiota in CLP-induced sepsis. Importantly, mortality and other pathologies in the model were decreased after Gpr109a−/− mice received WT gut microbiota. These findings indicate that GPR109A regulates the gut microbiota, contributing to intestinal epithelial barrier integrity and decreased mortality in CLP-induced sepsis.
Aflatoxin B1 ( AFB1 ) is a secondary metabolite produced by Aspergillus flavus and parasitic aspergillus , mainly existing in cereals, peanuts, corn, and other crops, which seriously endanger poultry, human health, and environment. Morin, a flavonoid compound extracted from moraceae plants, possess antioxidant, antibacterial, and anti-inflammatory effects. However, whether morin has a protective effect on AFB1-induced liver and kidney damage in chicks has not been specifically reported. In this study, we mainly confirmed the protective effect of morin on AFB1-induced liver and kidney damage in chicks and clarified its mechanism. It was found that morin can significantly reduce the liver biochemical indicators of alanine aminotransferase ( ALT ), aspartate aminotransferase ( AST ), and kidney indicators of creatinine ( CRE ) and urea nitrogen ( BUN ) levels. Meanwhile, histopathological examination showed that morin effectively relieved AFB1-caused liver damage, including hepatocyte disruption, swelling, and inflammatory cell infiltration, and effectively relieved kidney damage, including renal cell necrosis, exfoliation, and vacuolization. Further investigation of its mechanism demonstrated that morin significantly inhibited AFB1-induced heterophil extracellular traps ( HETs ) release, and decreased the level of malondialdehyde ( MDA ) but increased the levels of superoxide dismutase ( SOD ), glutathione peroxidase ( GSH-Px ), and catalase ( CAT ) in vivo. Moreover, quantitative real-time PCR ( qRT-PCR ) analysis showed that morin also significantly decreased AFB1-induced mRNA expressions of tumor necrosis factor-α ( TNF-α ), interleukin-6 ( IL-6 ) and interleukin-1β ( IL-1β ), inducible nitric oxide synthase ( iNOS ), cyclooxygenase-2 ( COX-2 ), caspase-1, caspase-3, and caspase-11. In conclusion, all results confirmed that morin could protect AFB1-caused liver and kidney damage by inhibiting HETs release, regulating oxidative stress, and inhibiting inflammatory response, suggesting that morin can be utilized as a potential drug for prevention and treatment of aflatoxicosis in poultry breeding industry.
Parkinson’s disease (PD) is caused by the loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN). Neuroinflammation, which is marked by microglial activation, plays a very important role in the pathogenesis of PD. Pro-inflammatory mediators produced by activated microglia could damage DA neurons. Hence, the inhibition of microglial activation may provide a new approach for treating PD. Galangin has been shown to inhibit inflammation in a variety of diseases, but not PD. In this study, we aimed to investigate the anti-inflammatory effect of galangin and the underlying mechanisms in Lipopolysaccharide (LPS) induced PD models. We first examined the protective effect of galangin in the LPS-induced PD rat model. Specifically, we investigated the effects on motor dysfunction, microglial activation, and the loss of DA neurons. Then, galangin was used to detect the impact on the inflammatory responses and inflammatory signaling pathways in LPS-induced BV-2 cells. The in vivo results showed that galangin dose-dependently attenuates the activation of microglia, the loss of DA neurons, and motor dysfunction. In vitro, galangin markedly inhibited LPS-induced expression of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β), cyclooxygenase 2 (COX-2), and induced nitric oxide synthase (iNOS) via associating with the phosphorylation of c-JUN N-terminal Kinase (JNK), p38, protein kinase B (AKT), and nuclear factor κB (NF-κB) p65. Collectively, the results indicated that galangin has a role in protecting DA neurons by inhibiting microglial activation.
Neuroinflammation, characterized marked by microglial activation, plays a very important role in the pathogenesis of Parkinson’s disease (PD). Upon activation, pro-inflammatory mediators are produced by microglia, triggering excessive inflammatory responses and ultimately damaging dopaminergic neurons. Therefore, the identification of agents that inhibit neuroinflammation may be an effective approach for developing novel treatments for PD. In this study, we sought to investigate whether peiminine protects dopaminergic neurons by inhibiting neuroinflammation. We evaluated the effects of peiminine on behavioural dysfunction, microglial activation and the loss of dopaminergic neurons in a rat model of lipopolysaccharide (LPS)-induced PD. BV-2 cells were pretreated with peiminine for 1 h and then stimulated with LPS for different times. Then, inflammatory responses and the related signalling pathways were analysed. Peiminine markedly attenuated behavioural dysfunction and inhibited the loss of dopaminergic neurons and microglial activation in the LPS-induced PD rat model. In BV-2 cells, peiminine significantly decreased LPS-induced expression of the pro-inflammatory mediators TNF-α, IL-6 and IL-1β, COX-2 and iNOS by inhibiting the phosphorylation of ERK1/2, AKT and NF-κB p65. Based on these results demonstrated that peiminine has a role in protecting dopaminergic neurons in the LPS-induced PD rat model by inhibiting neuroinflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.