Metal halide perovskite materials are emerging solution-processed semiconductors with considerable promise in optoelectronic devices 1,2 . Metal halide perovskite-based light-emitting devices (pLEDs) have received extensive interest for applications in flat-panel displays and solid-state lighting owing to their promise of low cost, tunable colors with narrow emission bandwidths, high photoluminescence quantum yield (PLQY), and facile solution processing [3][4][5][6][7] .However, the highest reported external quantum efficiency (EQE) of green-and red-emitting pLEDs are 14.36% 6,8 and 11.7% 7 , still far behind the performance of organic LEDs (OLEDs) [9][10][11] and inorganic quantum dot LEDs (QLEDs) 12 . Here we report visible perovskite LEDs that
The spontaneous α-to-δ phase transition of the formamidinium-based (FA) lead halide perovskite hinders its large scale application in solar cells. Though this phase transition can be inhibited by alloying with methylammonium-based (MA) perovskite, the underlying mechanism is largely unexplored. In this Communication, we grow high-quality mixed cations and halides perovskite single crystals (FAPbI)(MAPbBr) to understand the principles for maintaining pure perovskite phase, which is essential to device optimization. We demonstrate that the best composition for a perfect α-phase perovskite without segregation is x = 0.1-0.15, and such a mixed perovskite exhibits carrier lifetime as long as 11.0 μs, which is over 20 times of that of FAPbI single crystal. Powder XRD, single crystal XRD and FT-IR results reveal that the incorporation of MA is critical for tuning the effective Goldschmidt tolerance factor toward the ideal value of 1 and lowering the Gibbs free energy via unit cell contraction and cation disorder. Moreover, we find that Br incorporation can effectively control the perovskite crystallization kinetics and reduce defect density to acquire high-quality single crystals with significant inhibition of δ-phase. These findings benefit the understanding of α-phase stabilization behavior, and have led to fabrication of perovskite solar cells with highest efficiency of 19.9% via solvent management.
Perovskite
solar cells are strong competitors for silicon-based
ones, but suffer from poor long-term stability, for which the intrinsic
stability of perovskite materials is of primary concern. Herein, we
prepared a series of well-defined cesium-containing mixed cation and
mixed halide perovskite single-crystal alloys, which enabled systematic
investigations on their structural stabilities against light, heat,
water, and oxygen. Two potential phase separation processes are evidenced
for the alloys as the cesium content increases to 10% and/or bromide
to 15%. Eventually, a highly stable new composition, (FAPbI3)0.9(MAPbBr3)0.05(CsPbBr3)0.05, emerges with a carrier lifetime of 16 μs.
It remains stable during at least 10 000 h water–oxygen
and 1000 h light stability tests, which is very promising for long-term
stable devices with high efficiency. The mechanism for the enhanced
stability is elucidated through detailed single-crystal structure
analysis. Our work provides a single-crystal-based paradigm for stability
investigation, leading to the discovery of stable new perovskite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.