Abstract:Curcumin is a multifunctional and natural agent considered to be pharmacologically safe. However, its application in the food and medical industry is greatly limited by its poor water solubility, physicochemical instability and inadequate bioavailability. Nanoliposome encapsulation could significantly enhance the solubility and stability of curcumin. Curcumin nanoliposomes exhibited good physicochemical properties (entrapment efficiency = 57.1, particle size = 68.1 nm, polydispersity index = 0.246, and zeta potential = −3.16 mV). Compared with free curcumin, curcumin nanoliposomes exhibited good stability against alkaline pH and metal ions as well as good storage stability at 4 °C. Curcumin nanoliposomes also showed good sustained release properties. Compared with free curcumin, curcumin nanoliposomes presented an equal cellular antioxidant activity, which is mainly attributed to its lower cellular uptake as detected by fluorescence microscopy and flow cytometry. This study provide theoretical and practical guides for the further application of curcumin nanoliposomes.
Hydrogel beads (microgels) are promising delivery systems for encapsulation and release of proteins because they can be fabricated from food-grade biopolymers using mild processes. In this study, a model globular protein (whey protein) was encapsulated in calcium-alginate beads (D 43 = 290 to 520 μm) fabricated using an extrusion device with a vibrating nozzle. Protein-loaded beads were fabricated at three different pH values (pH 3, 5 and 7) to study the influence of protein-alginate electrostatic interactions on protein encapsulation, retention, and release. Protein encapsulation and retention was highest at low pH, while protein release was highest at high pH. Confocal microscopy and spectrophotometry measurements indicated that increasing the pH could trigger protein release from alginate beads formed at pH 3. These results suggest that hydrogel beads are suitable for encapsulation and pH-triggered release of proteins, which may be advantageous for certain food applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.