In this work, the role of long period stacking ordered (LPSO) phase in the crack propagation behavior of an as-cast Mg95.5Y3Zn1.5 alloy was investigated by dynamic four-point bent tests. The as-cast Mg95.5Y3Zn1.5 alloy is mainly composed of Mg matrix, 18R LPSO phase located at the grain boundaries and 14H LPSO phase located within the Mg matrix. The alloy exhibits excellent dynamic mechanical properties; the yield stress, maximum stress and strain to failure are 190.51 ± 3.52 MPa, 378.32 ± 4.26 MPa and 0.168 ± 0.006, respectively, at the strain rate of ~3000 s−1. The LPSO phase effectively hinders dynamic crack propagation in four typical ways, including crack tip blunting, crack opening inhibition, crack deflection and crack bridging, which are beneficial to the mechanical properties of the alloy under dynamic loadings.
Flexible and stretchable conductive materials have received significant attention due to their numerous potential applications in flexible printed electronics. In this paper, we describe a new type of conductive filler for flexible electrodes—silver nanonets prepared through the “dissolution–recrystallization” solvothermal route from porous silver nanoflakes. These new silver fillers show characteristics of both nanoflakes and nanoparticles with propensity to form interpenetrating polymer–silver networks. This effectively minimizes trade-off between composite electrode conductivity and stretchability and enables fabrication of the flexible electrodes simultaneously exhibiting high conductivity and mechanical durability. For example, an electrode with uniform, networked silver structure from the flakiest silver particles showed the lowest increase of resistivity upon extension (3500%), compared to that of the electrode filled with less flaky (3D) particles (>50,000%).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.