Thioglycolic acid-capped CdTexS(1 − x) quantum dots (QDs) were synthesized through a one-step approach in an aqueous medium. The CdTexS(1 − x) QDs played the role of a color conversion center. The structural and luminescent properties of the obtained CdTexS(1 − x) QDs were investigated. The fabricated red light-emitting hybrid device with the CdTexS(1 − x) QDs as the phosphor and a blue InGaN chip as the excitation source showed a good luminance. The Commission Internationale de L’Eclairage coordinates of the light-emitting diode (LED) at (0.66, 0.29) demonstrated a red LED. Results showed that CdTexS(1 − x) QDs can be excited by blue or near-UV regions. This feature presents CdTexS(1 − x) QDs with an advantage over wavelength converters for LEDs.
The production of xylooligosaccharides (XOS) from Jiuzao was studied using a two-stage process based on autohydrolysis pretreatment followed by enzymatic hydrolysis. Jiuzao was autohydrolyzed under conditions where temperature, time, particle size, and solid-liquid ratio were varied experimentally. Optimal XOS production was obtained from Jiuzao with a >20 mesh particle size treated at 181.5 °C for 20 min with a 1:13.6 solid-liquid ratio. Subsequently, optimal enzymatic hydrolysis conditions for xylanase XynAR were identified as 60 °C, pH 5, and xylanase XynAR loading of 15 U/mL. Using these conditions, a yield of 34.2% XOS was obtained from Jiuzao within 2 h. The process developed in the present study could enable effective and ecofriendly industrial production of XOS from Jiuzao.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.