The ride height control system is greatly affected by the random road excitation during the ride height adjusting of the driving condition. The structure of ride height adjusting system is first analyzed, and then the mathematical model of the ride height adjusting system with the random disturbance is established as a stochastic nonlinear system. This system is decoupled using the differential geometry theory and stabilized using the Variable Structure Control (VSC) technique. The designed ride height control system converges in probability to be asymptotically stable in the sliding motion band, and the desired control law is solved to ensure the stable adjustment of the ride height system. Simulation results show that the proposed stochastic VSC method is effective for the dynamic adjusting of the ride height. Finally, the semiphysical rig test illustrates the applicability of the proposed scheme.
Lane-changing is an important operation of an autonomous vehicle driving on the road. Safety and comfort are fully considered by excellent drivers in lane-changing operation. However, only the kinematic and dynamic constraints are taken into account in the traditional path planning methods, and the path generated by the traditional methods is very different from the actual trajectory of the vehicle driven by the excellent driver. In this paper, a path planning method for imitating the lane-changing operation of excellent drivers is proposed. Five experienced drivers are invited to do the lane-changing test, and the lane-changing trajectories data under different conditions are recorded. The excellent driver lane-changing model is established based on the genetic algorithm (GA) and back propagation (BP) neural network trained by the data of the lane-changing tests. The proposed approach can plan out an optimized lane change path according to the vehicle condition by learning the excellent drivers’ driving routes. The results of simulations verify that the path generated by the proposed algorithm is basically same as the track selected by the excellent drivers under same conditions, which can reflect the characteristics of the operations of the excellent driver. While applying safe lane-changing to autonomous vehicle, it can improve the ride comfort of the vehicle and therefore reduce the probability of motion sickness of the passengers caused by improper operation during lane change.
To solve the contradiction between handling stability and ride comfort of vehicles with interconnected air suspension system (IASS) and reduce the energy consumption of air suspension with adjustable spring stiffness, a coordinated control for dynamic performance was designed based on the logic of switching interconnection modes and game control for the damper. The control system consists of a switching controller for air suspension interconnection modes and a distribution controller for the damping force. The switching controller determines the optimal air suspension interconnection mode by calculating the vehicle dynamic performance index in real-time. The distribution controller achieves a distribution for optimal damping force based on an infinite time differential game. veDYNA software that is a vehicle dynamics analysis software based on MATLAB/Simulink was used to verify the algorithm, and the accuracy was verified by a bench test. Finally, the results show this coordinated system can significantly improve the ride comfort and restrain the pitching motion. Compared with traditional suspension, the vertical acceleration decreases by 18.32% and the dynamic stroke decreases by more than 10% under the straight condition; the vertical acceleration decreases by 12.24% and the roll angle decreases by 1.26% under the steering condition.
This paper is concerned with the conflicting performances of ride comfort and driving safety for semi-active suspension systems. To alleviate this conflict, a novel hybrid damping extension control (HDEC) method is proposed. This method adopts various control methods and the weights of each method are determined by extension theory. Firstly, body acceleration and tire dynamic transformation are selected to evaluate ride comfort and driving safety performance for the semi-active suspension system and their frequency responses of passive suspension, sky-hook control, ground hook control, and S-GH (sky-ground hook) control are analyzed based on a two degree-of-freedom (2-DOF) model. Secondly, extension theory is introduced and the extension control system, which contains three modes and corresponding control algorithms, is established. In addition, the low-frequency excitation and high-frequency excitation simulations are designed to determine the parameters of the extension control system. Finally, ve-DYNA vehicle suspension model simulation is applied to prove the feasibility and effectiveness of the extension control. The simulation results show that, based on the suspension state, extension control can improve the performance of ride comfort and driving safety.
This paper designs a quasi-zero stiffness suspension with an air spring and a magnetic spring in parallel to improve the vehicle ride comfort. The proposed new suspension does not change the overall layout of the air suspension or affect the handling stability, reducing the system’s natural frequency by a sound vibration isolation effect for a low-frequency vibration and finally improving ride comfort. The feasibility of quasi-zero stiffness suspension is verified by mathematical modeling of air spring and magnetic spring, and reasonable structural parameters are set for the simulation experiment. The 1/4 vehicle model with two degrees of freedom is built in MATLAB / Simulink. Select body acceleration, suspension working space, and tire dynamic load as evaluation indexes to test the comfort performance of the proposed suspension. The result shows that the proposed new suspension has a noticeable effect on reducing the acceleration of the vehicle body and significantly improves the vehicle ride comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.