Biocompatible, biodegradable, and luminescent nano material can be used as an alternative bioimaging agent for early cancer diagnosis, which is crucial to achieve successful treatment. Hydroxyapatite (HAP) nanocyrstals have good biocompatibility and biodegradability, and can be used as an excellent host for luminescent rare earth elements. In this study, based on the energy transfer from Gd(3+) to Eu(3+), the luminescence enhanced imaging agent of Eu/Gd codoping HAP (HAP:Eu/Gd) nanocrystals are obtained via coprecipitation with plate-like shape and no change in crystal phase composition. The luminescence can be much elevated (up to about 120%) with a nonlinear increase versus Gd doping content, which is due to the energy transfer ((6)PJ of Gd(3+) → (5)HJ of Eu(3+)) under 273 nm and the possible combination effect of the cooperative upconversion and the successive energy transfer under 394 nm, respectively. Results demonstrate that the biocompatible HAP:Eu/Gd nanocrystals can successfully perform cell labeling and in vivo imaging. The intracellular HAP:Eu/Gd nanocrystals display good biodegradability with a cumulative degradation of about 65% after 72 h. This biocompatible, biodegradable, and luminescence enhanced HAP:Eu/Gd nanocrystal has the potential to act as a fluorescent imaging agent in vitro and in vivo.
The effect of heat treatment on the properties of soy protein-stabilised emulsions was investigated. Emulsions were prepared with unheated and heat-treated soy protein (NSP and HSP) dispersions. Heating on soy protein dispersions at 95°C for 30 min resulted in smaller average oil droplet size, lower tendency for oil droplet flocculation, higher protein adsorption and lower viscosity. The properties of emulsions were significantly influenced by the protein concentration. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles showed that the heat treatment on soy protein dispersions increased the protein adsorption at O ⁄ W interface. The viscosity of all samples at low shear rate was inversely proportional to the d 32 , suggesting a positive relation to the total interfacial area per unit volume. Emulsions showed shear-thinning behaviour. The relaxation time was found to increase with aqueous phase viscosity determined by the Cross viscosity model.
In this paper, a propagation path loss model for inland river is proposed by three improvements compared with the Round Earth Loss (REL) model for open-sea environment. Specifically, parameters optimization uses Okumura-Hata model in dB scale to replace the equation transformed from the free space loss in REL model; secondly, diffraction loss caused by the obstacles (e.g., large buildings, bridges, or some other facilities near the river bank) is also taken into account; mixed-path methodology as another improvement is used for Inland River (IR) model because the actual propagation environment between transmitter (TX) antenna and receiver (RX) antenna contains both land part and water part. The paper presents a set of 1.4 GHz measurements conducted along the Yangtze River in Wuhan. According to the comparison between path loss models and experimental results, IR model shows a good matching degree. After that, Root Mean Square Error (RMSE), Grey Relation Grade and Mean Absolute Percentage Error (GRG-MAPE), Pearson Correlation Coefficient, and Mean Absolute Percentage Error (PCC-MAPE) are employed to implement quantitative analysis. The results prove that IR model with consideration of mixed path and deterministic information is more accurate than other classic empirical propagation models for these scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.